Abstract
ZRP4, a 1.4-kb mRNA that preferentially accumulates in roots of young Zea mays L. plants, was identified by isolation of the corresponding cDNA clone. Genomic Southern analysis indicates that the zrp4 gene is represented once in the corn genome. The deduced ZRP4 polypeptide of 39,558 D is rich in leucine, serine, and alanine. Comparison of the deduced ZRP4 polypeptide sequence to polypeptide sequences of previously cloned plant and animal genes indicates that ZRP4 may be an O-methyltransferase. The ZRP4 mRNA preferentially accumulates in young roots and can be detected only at low levels in leaf, stem, and other shoot organs. ZRP4 mRNA accumulation is developmentally regulated within the root, with very low levels of accumulation in the meristematic region, higher levels in the regions of cell elongation, highest levels in the region of cell maturation, and low levels in the mature regions of the root. ZRP4 mRNA is predominantly located in the endodermis, with lower levels in the exodermis. An intriguing possibility is that the ZRP4 mRNA may code for an O-methyltransferase involved in suberin biosynthesis.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bugos R. C., Chiang V. L., Campbell W. H. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol. 1991 Dec;17(6):1203–1215. doi: 10.1007/BF00028736. [DOI] [PubMed] [Google Scholar]
- Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
- Collazo P., Montoliu L., Puigdomènech P., Rigau J. Structure and expression of the lignin O-methyltransferase gene from Zea mays L. Plant Mol Biol. 1992 Dec;20(5):857–867. doi: 10.1007/BF00027157. [DOI] [PubMed] [Google Scholar]
- Conkling M. A., Cheng C. L., Yamamoto Y. T., Goodman H. M. Isolation of transcriptionally regulated root-specific genes from tobacco. Plant Physiol. 1990 Jul;93(3):1203–1211. doi: 10.1104/pp.93.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gowri G., Bugos R. C., Campbell W. H., Maxwell C. A., Dixon R. A. Stress Responses in Alfalfa (Medicago sativa L.): X. Molecular Cloning and Expression of S-Adenosyl-l-Methionine:Caffeic Acid 3-O-Methyltransferase, a Key Enzyme of Lignin Biosynthesis. Plant Physiol. 1991 Sep;97(1):7–14. doi: 10.1104/pp.97.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingrosso D., Fowler A. V., Bleibaum J., Clarke S. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J Biol Chem. 1989 Nov 25;264(33):20131–20139. [PubMed] [Google Scholar]
- Keller B., Lamb C. J. Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev. 1989 Oct;3(10):1639–1646. doi: 10.1101/gad.3.10.1639. [DOI] [PubMed] [Google Scholar]
- McLean B. G., Eubanks S., Meagher R. B. Tissue-specific expression of divergent actins in soybean root. Plant Cell. 1990 Apr;2(4):335–344. doi: 10.1105/tpc.2.4.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto Y. T., Taylor C. G., Acedo G. N., Cheng C. L., Conkling M. A. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell. 1991 Apr;3(4):371–382. doi: 10.1105/tpc.3.4.371. [DOI] [PMC free article] [PubMed] [Google Scholar]