Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Aug;102(4):1171–1177. doi: 10.1104/pp.102.4.1171

Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase.

C Colas des Francs-Small 1, F Ambard-Bretteville 1, I D Small 1, R Rémy 1
PMCID: PMC158902  PMID: 8278546

Abstract

In many plant species, one of the most abundant soluble proteins (as judged by two-dimensional polyacrylamide gel electrophoresis) in mitochondria from nongreen tissues is a 40-kD polypeptide that is relatively scarce in mitochondria from photosynthetic tissues. cDNA sequences encoding this polypeptide were isolated from a lambda gt11 cDNA expression library from potato (Solanum tuberosum L.) by screening with a specific antibody raised against the 40-kD polypeptide. The cDNA sequence contains an open reading frame of 1137 nucleotides whose predicted amino acid sequence shows strong homology to an NAD-dependent formate dehydrogenase (EC 1.2.1.2) from Pseudomonas sp. 101. Comparison of the cDNA sequence with the N-terminal amino acid sequence of the mature 40-kD polypeptide suggests that the polypeptide is made as a precursor with a 23-amino acid presequence that shows characteristics typical of mitochondrial targeting signals. The identity of the polypeptide was confirmed by assaying the formate dehydrogenase activity in plant mitochondria from various tissues and by activity staining of mitochondrial proteins run on native gels combined with antibody recognition. The abundance and distribution of this protein suggest that higher plant mitochondria from various nonphotosynthetic plant tissues (tubers, storage roots, seeds, dark-grown shoots, cauliflower heads, and tissues grown in vitro) might contain a formate-producing fermentation pathway similar to those described in bacteria and algae.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Amann E., Ochs B., Abel K. J. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. 1988 Sep 30;69(2):301–315. doi: 10.1016/0378-1119(88)90440-4. [DOI] [PubMed] [Google Scholar]
  3. Humphrey-Smith I., Colas des Francs-Small C., Ambart-Bretteville F., Remy R. Tissue-specific variation of pea mitochondrial polypeptides detected by computerized image analysis of two-dimensional electrophoresis gels. Electrophoresis. 1992 Mar;13(3):168–172. doi: 10.1002/elps.1150130134. [DOI] [PubMed] [Google Scholar]
  4. Izumi Y., Kanzaki H., Morita S., Futazuka H., Yamada H. Characterization of crystalline formate dehydrogenase from Candida methanolica. Eur J Biochem. 1989 Jun 15;182(2):333–341. doi: 10.1111/j.1432-1033.1989.tb14835.x. [DOI] [PubMed] [Google Scholar]
  5. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  6. MATHEWS M. B., VENNESLAND B. Enzymic oxidation of formic acid. J Biol Chem. 1950 Oct;186(2):667–682. [PubMed] [Google Scholar]
  7. Moore A. L., Siedow J. N. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta. 1991 Aug 23;1059(2):121–140. doi: 10.1016/s0005-2728(05)80197-5. [DOI] [PubMed] [Google Scholar]
  8. Oliver D. J. Formate oxidation and oxygen reduction by leaf mitochondria. Plant Physiol. 1981 Sep;68(3):703–705. doi: 10.1104/pp.68.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Popov V. O., Shumilin I. A., Ustinnikova T. B., Lamzin V. S., Egorov Ts A. NAD-zavisimaia formiatdegidrogenaza metilotrofnykh bakterii Pseudomonas sp. 101. I. Aminokislotnaia posledovatel'nost'. Bioorg Khim. 1990 Mar;16(3):324–335. [PubMed] [Google Scholar]
  10. Rhoads D. M., McIntosh L. Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2122–2126. doi: 10.1073/pnas.88.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schüte H., Flossdorf J., Sahm H., Kula M. R. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur J Biochem. 1976 Feb 2;62(1):151–160. doi: 10.1111/j.1432-1033.1976.tb10108.x. [DOI] [PubMed] [Google Scholar]
  12. Turner S. R., Ireland R., Rawsthorne S. Purification and primary amino acid sequence of the L subunit of glycine decarboxylase. Evidence for a single lipoamide dehydrogenase in plant mitochondria. J Biol Chem. 1992 Apr 15;267(11):7745–7750. [PubMed] [Google Scholar]
  13. Uotila L., Koivusalo M. Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism. Arch Biochem Biophys. 1979 Aug;196(1):33–45. doi: 10.1016/0003-9861(79)90548-4. [DOI] [PubMed] [Google Scholar]
  14. Walker J. L., Oliver D. J. Glycine decarboxylase multienzyme complex. Purification and partial characterization from pea leaf mitochondria. J Biol Chem. 1986 Feb 15;261(5):2214–2221. [PubMed] [Google Scholar]
  15. des Francs-Small C. C., Ambard-Bretteville F., Darpas A., Sallantin M., Huet J. C., Pernollet J. C., Rémy R. Variation of the polypeptide composition of mitochondria isolated from different potato tissues. Plant Physiol. 1992 Jan;98(1):273–278. doi: 10.1104/pp.98.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. van Dijken J. P., Oostra-Demkes G. J., Otto R., Harder W. S-formylgluthathione: the substrate for formate dehydrogenase in methanol-utilizing yeasts. Arch Microbiol. 1976 Dec 1;111(1-2):77–83. doi: 10.1007/BF00446552. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES