Abstract
Two new abscisic acid (ABA)-insensitive mutants of Arabidopsis thaliana affected in the abi3 locus are described. These new mutants are severely ABA insensitive. Like the earlier described abi3-1 and the ABA-deficient and -insensitive double mutant aba,abi3, these new mutants vary in the extent of ABA-correlated physiological responses. Mutant seeds fail to degrade chlorophyll during maturation and show no dormancy, and desiccation tolerance and longevity are poorly developed. Carbohydrate accumulation as well as synthesis of LEA or RAB proteins are often suggested to be essential for acquisition of desiccation tolerance. In this work two points are demonstrated. (a) Accumulation of carbohydrates as such does not correlate with acquisition of desiccation tolerance or longevity. It is suggested that a low ratio of mono- to oligosac-charides rather than the absolute amount of carbohydrates controls seed longevity or stability to desiccation tolerance. (b) Synthesis of a few assorted proteins, which is responsive to ABA in the later part of seed maturation, is not correlated with desiccation tolerance or longevity.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruni F., Leopold A. C. Glass transitions in soybean seed : relevance to anhydrous biology. Plant Physiol. 1991 Jun;96(2):660–663. doi: 10.1104/pp.96.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowe J. H., Hoekstra F. A., Crowe L. M. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc Natl Acad Sci U S A. 1989 Jan;86(2):520–523. doi: 10.1073/pnas.86.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finkelstein R. R., Crouch M. L. Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 1986 Jul;81(3):907–912. doi: 10.1104/pp.81.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Perez A., Martin B., Murphy H. R., Uchida S., Murer H., Cowley B. D., Jr, Handler J. S., Burg M. B. Molecular cloning of cDNA coding for kidney aldose reductase. Regulation of specific mRNA accumulation by NaCl-mediated osmotic stress. J Biol Chem. 1989 Oct 5;264(28):16815–16821. [PubMed] [Google Scholar]
- Hattori T., Vasil V., Rosenkrans L., Hannah L. C., McCarty D. R., Vasil I. K. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 1992 Apr;6(4):609–618. doi: 10.1101/gad.6.4.609. [DOI] [PubMed] [Google Scholar]
- Hoekstra F. A., Crowe J. H., Crowe L. M. Effect of Sucrose on Phase Behavior of Membranes in Intact Pollen of Typha latifolia L., as Measured with Fourier Transform Infrared Spectroscopy. Plant Physiol. 1991 Nov;97(3):1073–1079. doi: 10.1104/pp.97.3.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koornneef M., Hanhart C. J., Hilhorst H. W., Karssen C. M. In Vivo Inhibition of Seed Development and Reserve Protein Accumulation in Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in Arabidopsis thaliana. Plant Physiol. 1989 Jun;90(2):463–469. doi: 10.1104/pp.90.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koster K. L. Glass formation and desiccation tolerance in seeds. Plant Physiol. 1991 May;96(1):302–304. doi: 10.1104/pp.96.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarty D. R., Hattori T., Carson C. B., Vasil V., Lazar M., Vasil I. K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell. 1991 Sep 6;66(5):895–905. doi: 10.1016/0092-8674(91)90436-3. [DOI] [PubMed] [Google Scholar]
- Meurs C., Basra A. S., Karssen C. M., van Loon L. C. Role of Abscisic Acid in the Induction of Desiccation Tolerance in Developing Seeds of Arabidopsis thaliana. Plant Physiol. 1992 Apr;98(4):1484–1493. doi: 10.1104/pp.98.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]