Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Aug;102(4):1291–1298. doi: 10.1104/pp.102.4.1291

Monospecific polyclonal antibodies directed against purified cinnamate 4-hydroxylase from Helianthus tuberosus. Immunopurification, immunoquantitation, and interspecies cross-reactivity.

D Werck-Reichhart 1, Y Batard 1, G Kochs 1, A Lesot 1, F Durst 1
PMCID: PMC158918  PMID: 8278549

Abstract

We recently reported the purification of cinnamic acid 4-hydroxylase (CA4H), a cytochrome P-450 catalyzing the second reaction of the general phenylpropanoid pathway, from Jerusalem artichoke (Helianthus tuberosus L.) (B. Gabriac, D. Werck-Reichhart, H. Teutsch, F. Durst [1991] Arch Biochem Biophys 288: 302-309). Rabbit polyclonal antibodies were raised against the native and denaturated nitrocellulose-bound enzyme. Only the immunoglobulins G (IgGs) elicited upon immunization with native enzyme produced strong inhibition of catalytic activity and good cross-reactivity on western blots. In microsomes from H. tuberosus tissues induced by wounding and various chemicals, a positive correlation between catalytic activity and amounts of immunoreactive protein on western blots was observed. When coupled to cyanogen bromide-activated Sepharose, purified IgGs selectively retained CA4H activity from solubilized plant microsomes. Acid elution from the immunoaffinity matrix provided a rapid procedure for high-yield purification of the CA4H protein. The same IgGs immunoprecipitated a single protein from the in vitro translation products of mRNA isolated from wounded tissues. The apparent molecular weight (57,000) of this polypeptide was identical to that of CA4H purified from tuber microsomes. Immunochemical relatedness between CA4H from different plant species was demonstrated by strong inhibition of catalytic activity and immunopurification of several orthologous enzymes, using IgGs directed against CA4H from H. tuberosus. However, only limited interspecies cross-reactivity was observed on western blots. A careful immunochemical analysis indicates that CA4H immunoreactivity significantly differs from plant to plant. Results are discussed in terms of antibody specificity, enzyme glycosylation, and CA4H regulation.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng K. C., Gelboin H. V., Song B. J., Park S. S., Friedman F. K. Detection and purification of cytochromes P-450 in animal tissues with monoclonal antibodies. J Biol Chem. 1984 Oct 10;259(19):12279–12284. [PubMed] [Google Scholar]
  2. Dus K., Litchfield W. J., Miguel A. G., van der Hoeven T. A., Haugen D. A., Dean W. L., Coon M. J. Structural resemblance of cytochrome P-450 isolated from Pseudomonas putida and from rabbit liver microsomes. Biochem Biophys Res Commun. 1974 Sep 9;60(1):15–21. doi: 10.1016/0006-291x(74)90165-x. [DOI] [PubMed] [Google Scholar]
  3. Fujita M., Oba K., Uritani I. Properties of a Mixed Function Oxygenase Catalyzing Ipomeamarone 15-Hydroxylation in Microsomes from Cut-Injured and Ceratocystis fimbriata-Infected Sweet Potato Root Tissues. Plant Physiol. 1982 Aug;70(2):573–578. doi: 10.1104/pp.70.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hamerski D., Matern U. Elicitor-induced biosynthesis of psoralens in Ammi majus L. suspension cultures. Microsomal conversion of demethylsuberosin into (+)marmesin and psoralen. Eur J Biochem. 1988 Jan 15;171(1-2):369–375. doi: 10.1111/j.1432-1033.1988.tb13800.x. [DOI] [PubMed] [Google Scholar]
  5. Kochs G., Grisebach H. Phytoalexin synthesis in soybean: purification and reconstitution of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase. Arch Biochem Biophys. 1989 Sep;273(2):543–553. doi: 10.1016/0003-9861(89)90514-6. [DOI] [PubMed] [Google Scholar]
  6. O'keefe D. P., Leto K. J. Cytochrome P-450 from the Mesocarp of Avocado (Persea americana). Plant Physiol. 1989 Apr;89(4):1141–1149. doi: 10.1104/pp.89.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Potts J. R., Weklych R., Conn E. E., Rowell J. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J Biol Chem. 1974 Aug 25;249(16):5019–5026. [PubMed] [Google Scholar]
  8. Reichhart D., Salaün J. P., Benveniste I., Durst F. Time Course of Induction of Cytochrome P-450, NADPH-Cytochrome c Reductase, and Cinnamic Acid Hydroxylase by Phenobarbital, Ethanol, Herbicides, and Manganese in Higher Plant Microsomes. Plant Physiol. 1980 Oct;66(4):600–604. doi: 10.1104/pp.66.4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Russell D. W. The metabolism of aromatic compounds in higer plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control. J Biol Chem. 1971 Jun 25;246(12):3870–3878. [PubMed] [Google Scholar]
  10. Stewart C. B., Schuler M. A. Antigenic Crossreactivity between Bacterial and Plant Cytochrome P-450 Monoxygenases. Plant Physiol. 1989 Jun;90(2):534–541. doi: 10.1104/pp.90.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vetter H. P., Mangold U., Schröder G., Marner F. J., Werck-Reichhart D., Schröder J. Molecular Analysis and Heterologous Expression of an Inducible Cytochrome P-450 Protein from Periwinkle (Catharanthus roseus L.). Plant Physiol. 1992 Oct;100(2):998–1007. doi: 10.1104/pp.100.2.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Woodward M. P., Young W. W., Jr, Bloodgood R. A. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985 Apr 8;78(1):143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES