Abstract
Hypocotyls of dark-grown Arabidopsis seedlings exhibit strong negative gravitropism, whereas in red light, gravitropism is strongly reduced. Red/far-red light-pulse experiments and analysis of specific phytochrome-deficient mutants indicate that the red-absorbing (Pr) form of phytochrome B regulates normal hypocotyl gravitropism in darkness, and depletion of Pr by photoconversion to the far-red-absorbing form attenuates hypocotyl gravitropism. These studies provide genetic evidence that the Pr form of phytochrome has an active function in plant development.
Full Text
The Full Text of this article is available as a PDF (514.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caspar T., Pickard B. G. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta. 1989;177:185–197. [PubMed] [Google Scholar]
- Chory J., Peto C. A., Ashbaugh M., Saganich R., Pratt L., Ausubel F. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. Plant Cell. 1989 Sep;1(9):867–880. doi: 10.1105/tpc.1.9.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldman L. J., Briggs W. R. Light-regulated gravitropism in seedling roots of maize. Plant Physiol. 1987;83:241–243. doi: 10.1104/pp.83.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liscum E., Young J. C., Poff K. L., Hangarter R. P. Genetic separation of phototropism and blue light inhibition of stem elongation. Plant Physiol. 1992 Sep;100(1):267–271. doi: 10.1104/pp.100.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McArthur J. A. Effect of red light on geotropism in pea epicotyls. Plant Physiol. 1979 Jan;63(1):218–220. doi: 10.1104/pp.63.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratt L. H., Briggs W. R. Photochemical and Nonphotochemical Reactions of Phytochrome in vivo. Plant Physiol. 1966 Mar;41(3):467–474. doi: 10.1104/pp.41.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
- Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinitz B., Ren Z., Poff K. L. Blue and Green Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings. Plant Physiol. 1985 Jan;77(1):248–251. doi: 10.1104/pp.77.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]