Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Sep;103(1):59–65. doi: 10.1104/pp.103.1.59

Galactose-Specific Lectins Protect Isolated Thylakoids against Freeze-Thaw Damage.

D K Hincha 1, I Bakaltcheva 1, J M Schmitt 1
PMCID: PMC158946  PMID: 12231914

Abstract

We have measured freeze-thaw damage to isolated spinach (Spinacia oleracea L.) chloroplast thylakoid membranes in the presence of different galactose-specific seed lectins to determine whether the binding of proteins to the membrane surface can lead to cryoprotection. Of the seven lectins investigated, five were protective to different degrees and two showed no measurable effect. Protection was afforded by a reduction of the solute permeability of the membranes. This reduced the solute influx during freezing and thereby osmotic rupture of the thylakoid vesicles during thawing. Using model membranes and fluorescently labeled lectins, we could show that the proteins bound exclusively to the digalactosyl lipids in the membranes. Binding was a prerequisite for the protective effect, because the presence of up to 5 mM galactose in the samples completely inhibited both binding of the lectins to thylakoid and model membranes and cryoprotection. The degree of binding was, in contrast, not related to the cryoprotective efficiency of different lectins; cryoprotection was a function of the hydrophobicity of the proteins.

Full Text

The Full Text of this article is available as a PDF (699.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamska I., Kloppstech K. Evidence for the localization of the nuclear-coded 22-kDa heat-shock protein in a subfraction of thylakoid membranes. Eur J Biochem. 1991 Jun 1;198(2):375–381. doi: 10.1111/j.1432-1033.1991.tb16025.x. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block M. A., Dorne A. J., Joyard J., Douce R. Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem. 1983 Nov 10;258(21):13281–13286. [PubMed] [Google Scholar]
  4. Chrispeels M. J., Raikhel N. V. Lectins, lectin genes, and their role in plant defense. Plant Cell. 1991 Jan;3(1):1–9. doi: 10.1105/tpc.3.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Close T. J., Kortt A. A., Chandler P. M. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol. 1989 Jul;13(1):95–108. doi: 10.1007/BF00027338. [DOI] [PubMed] [Google Scholar]
  6. Glaczinski H., Kloppstech K. Temperature-dependent binding to the thylakoid membranes of nuclear-coded chloroplast heat-shock proteins. Eur J Biochem. 1988 May 2;173(3):579–583. doi: 10.1111/j.1432-1033.1988.tb14038.x. [DOI] [PubMed] [Google Scholar]
  7. Hincha D. K., Höfner R., Schwab K. B., Heber U., Schmitt J. M. Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting. Plant Physiol. 1987 Feb;83(2):251–253. doi: 10.1104/pp.83.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Höfner R., Vazquez-Moreno L., Winter K., Bohnert H. J., Schmitt J. M. Induction of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum by High Salinity: Mass Increase and de Novo Synthesis of PEP-Carboxylase. Plant Physiol. 1987 Apr;83(4):915–919. doi: 10.1104/pp.83.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lis H., Sharon N. Lectins as molecules and as tools. Annu Rev Biochem. 1986;55:35–67. doi: 10.1146/annurev.bi.55.070186.000343. [DOI] [PubMed] [Google Scholar]
  10. Lynch D. V., Steponkus P. L. Plasma Membrane Lipid Alterations Associated with Cold Acclimation of Winter Rye Seedlings (Secale cereale L. cv Puma). Plant Physiol. 1987 Apr;83(4):761–767. doi: 10.1104/pp.83.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Olsnes S., Saltvedt E., Pihl A. Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem. 1974 Feb 10;249(3):803–810. [PubMed] [Google Scholar]
  12. Picquart M., Nicolas E., Lavialle F. Membrane-damaging action of ricin on DPPC and DPPC-cerebrosides assemblies. A Raman and FTIR analysis. Eur Biophys J. 1989;17(3):143–149. doi: 10.1007/BF00254768. [DOI] [PubMed] [Google Scholar]
  13. Roberts D. D., Goldstein I. J. Binding of hydrophobic ligands to plant lectins: titration with arylaminonaphthalenesulfonates. Arch Biochem Biophys. 1983 Jul 15;224(2):479–484. doi: 10.1016/0003-9861(83)90235-7. [DOI] [PubMed] [Google Scholar]
  14. Wang J. L., Edelman G. M. Fluorescent probes for conformational states of proteins. IV. The pepsinogen-pepsin conversion. J Biol Chem. 1971 Mar 10;246(5):1185–1191. [PubMed] [Google Scholar]
  15. Wei C. H., Hartman F. C., Pfuderer P., Yang W. K. Purification and characterization of two major toxic proteins from seeds of Abrus precatorius. J Biol Chem. 1974 May 25;249(10):3061–3067. [PubMed] [Google Scholar]
  16. Wu A. M., Lin S. R., Chin L. K., Chow L. P., Lin J. Y. Defining the carbohydrate specificities of Abrus precatorius agglutinin as T (Gal beta 1----3GalNAc) greater than I/II (Gal beta 1----3/4GlcNAc). J Biol Chem. 1992 Sep 25;267(27):19130–19139. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES