Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Sep;103(1):171–180. doi: 10.1104/pp.103.1.171

PsaE Is Required for in Vivo Cyclic Electron Flow around Photosystem I in the Cyanobacterium Synechococcus sp. PCC 7002.

L Yu 1, J Zhao 1, U Muhlenhoff 1, D A Bryant 1, J H Golbeck 1
PMCID: PMC158960  PMID: 12231924

Abstract

Electron transfer rates to P700+ have been determined in wild-type and three interposon mutants (psaE-, ndhF-, and psaE- ndhF-) of Synechococcus sp. PCC 7002. All three mutants grew significantly more slowly than wild type at low light intensities, and each failed to grow photoheterotrophically in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a metabolizable carbon source. The kinetics of P700+ reduction were similar in the wild-type and mutant whole cells in the absence of DCMU. In the presence of DCMU, the P700+ reduction rate in the psaE mutant was significantly slower than in the wild type. In the presence of DCMU and potassium cyanide, added to inhibit the outflow of electrons through cytochrome oxidase, P700+ reduction rates increased for both the psaE- and ndhF- strains. The reduction rates for these two mutants were nonetheless slower than that observed for the wild-type strain. The further addition of methyl viologen caused the rate of P700+ reduction in the wild type to become as slow as that for the psaE mutant in the absence of methyl viologen. Given the ability of methyl viologen to intercept electrons from the acceptor side of photosystem I, this response reveals a lesion in cyclic electron flow in the psaE mutant. In the presence of DCMU, the rate of P700+ reduction in the psaE ndhF double mutant was very slow and nearly identical with that for the wild-type strain in the presence of 2,4-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a condition under which physiological electron donation to P700+ should be completely inhibited. These results suggest that NdhF- and PsaE-dependent electron donation to P700+ occurs only via plastoquinone and/or cytochrome b6/f and indicate that there are three major electron sources for P700+ reduction in this cyanobacterium. We conclude that, although PsaE is not required for linear electron flow to NADP+, it is an essential component in the cyclic electron transport pathway around photosystem I.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger S., Ellersiek U., Steinmüller K. Cyanobacteria contain a mitochondrial complex I-homologous NADH-dehydrogenase. FEBS Lett. 1991 Jul 29;286(1-2):129–132. doi: 10.1016/0014-5793(91)80957-5. [DOI] [PubMed] [Google Scholar]
  3. Biggins J. Kinetic behavior of cytochrome f in cyclic and noncyclic electron transport in Porphyridium cruentum. Biochemistry. 1973 Mar 13;12(6):1165–1170. doi: 10.1021/bi00730a023. [DOI] [PubMed] [Google Scholar]
  4. Buzby J. S., Porter R. D., Stevens S. E., Jr Plasmid transformation in Agmenellum quadruplicatum PR-6: construction of biphasic plasmids and characterization of their transformation properties. J Bacteriol. 1983 Jun;154(3):1446–1450. doi: 10.1128/jb.154.3.1446-1450.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chitnis P. R., Reilly P. A., Miedel M. C., Nelson N. Structure and targeted mutagenesis of the gene encoding 8-kDa subunit of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1989 Nov 5;264(31):18374–18380. [PubMed] [Google Scholar]
  6. Knaff D. B., Hirasawa M. Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta. 1991 Jan 22;1056(2):93–125. doi: 10.1016/s0005-2728(05)80277-4. [DOI] [PubMed] [Google Scholar]
  7. Lambert D. H., Stevens S. E., Jr Photoheterotrophic growth of Agmenellum quadruplicatum PR-6. J Bacteriol. 1986 Feb;165(2):654–656. doi: 10.1128/jb.165.2.654-656.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leach C. K., Carr N. G. Electron transport and oxidative phosphorylation in the blue-green alga Anabaena variabilis. J Gen Microbiol. 1970 Nov;64(1):55–70. doi: 10.1099/00221287-64-1-55. [DOI] [PubMed] [Google Scholar]
  9. Maxwell P. C., Biggins J. Role of cyclic electron transport in photosynthesis as measured by the photoinduced turnover of P700 in vivo. Biochemistry. 1976 Sep 7;15(18):3975–3981. doi: 10.1021/bi00663a011. [DOI] [PubMed] [Google Scholar]
  10. Ogawa T. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4275–4279. doi: 10.1073/pnas.88.10.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ogawa T. Identification and Characterization of the ictA/ndhL Gene Product Essential to Inorganic Carbon Transport of Synechocystis PCC6803. Plant Physiol. 1992 Aug;99(4):1604–1608. doi: 10.1104/pp.99.4.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oh-oka H., Takahashi Y., Kuriyama K., Saeki K., Matsubara H. The protein responsible for center A/B in spinach photosystem I: isolation with iron-sulfur cluster(s) and complete sequence analysis. J Biochem. 1988 Jun;103(6):962–968. doi: 10.1093/oxfordjournals.jbchem.a122394. [DOI] [PubMed] [Google Scholar]
  13. Scherer S. Do photosynthetic and respiratory electron transport chains share redox proteins? Trends Biochem Sci. 1990 Dec;15(12):458–462. doi: 10.1016/0968-0004(90)90296-n. [DOI] [PubMed] [Google Scholar]
  14. Walker J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 1992 Aug;25(3):253–324. doi: 10.1017/s003358350000425x. [DOI] [PubMed] [Google Scholar]
  15. Wishnick M., Lane M. D. Inhibition of ribulose diphosphate carboxylase by cyanide. Inactive ternary complex of enzyme, ribulose diphosphate, and cyanide. J Biol Chem. 1969 Jan 10;244(1):55–59. [PubMed] [Google Scholar]
  16. Zanetti G., Merati G. Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem. 1987 Nov 16;169(1):143–146. doi: 10.1111/j.1432-1033.1987.tb13591.x. [DOI] [PubMed] [Google Scholar]
  17. Zhao J., Snyder W. B., Mühlenhoff U., Rhiel E., Warren P. V., Golbeck J. H., Bryant D. A. Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Microbiol. 1993 Jul;9(1):183–194. doi: 10.1111/j.1365-2958.1993.tb01680.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES