Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Sep;103(1):181–189. doi: 10.1104/pp.103.1.181

Photosystem II Reaction Center Damage and Repair in Dunaliella salina (Green Alga) (Analysis under Physiological and Irradiance-Stress Conditions).

J H Kim 1, J A Nemson 1, A Melis 1
PMCID: PMC158961  PMID: 12231925

Abstract

Mechanistic aspects of the photosystem II (PSII) damage and repair cycle in chloroplasts were investigated. The D1/32-kD reaction center protein of PSII (known as the psbA chloroplast gene product) undergoes a frequent light-dependent damage and turnover in the thylakoid membrane. In the model organism Dunaliella salina (green alga), growth under a limiting intensity of illumination (100 [mu]mol of photons m-2 s-1; low light) entails damage, degradation, and replacement of D1 every about 7 h. Growth under irradiance-stress conditions (2000 [mu]mol of photons m-2 s-1; high light) entails damage to and replacement of D1 about every 20 min. Thus, the rate of damage and repair of PSII appears to be proportional to the light intensity during plant growth. Low-light-grown cells do not possess the capacity for high rates of repair. Upon transfer of low-light-grown cells to high-light conditions, accelerated damage to reaction center proteins is followed by PSII disassembly and aggregation of neighboring reaction center complexes into an insoluble dimer form. The accumulation of inactive PSII centers that still contain the D1 protein suggests that the rate of D1 degradation is the rate-limiting step in the PSII repair cycle. Under irradiance-stress conditions, chloroplasts gradually acquire a greater capacity for repair. The induction of this phenomenon occurs with a half-time of about 24 h.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bottomley W., Spencer D., Whitfeld P. R. Protein synthesis in isolated spinach chloroplasts: comparison of light-driven and ATP-driven synthesis. Arch Biochem Biophys. 1974 Sep;164(1):106–117. doi: 10.1016/0003-9861(74)90012-5. [DOI] [PubMed] [Google Scholar]
  3. Callahan F. E., Ghirardi M. L., Sopory S. K., Mehta A. M., Edelman M., Mattoo A. K. A novel metabolic form of the 32 kDa-D1 protein in the grana-localized reaction center of photosystem II. J Biol Chem. 1990 Sep 15;265(26):15357–15360. [PubMed] [Google Scholar]
  4. KOK B. On the inhibition of photosynthesis by intense light. Biochim Biophys Acta. 1956 Aug;21(2):234–244. doi: 10.1016/0006-3002(56)90003-8. [DOI] [PubMed] [Google Scholar]
  5. Kettunen R., Tyystjärvi E., Aro E. M. D1 protein degradation during photoinhibition of intact leaves. A modification of the D1 protein precedes degradation. FEBS Lett. 1991 Sep 23;290(1-2):153–156. doi: 10.1016/0014-5793(91)81247-6. [DOI] [PubMed] [Google Scholar]
  6. Kyle D. J., Ohad I., Arntzen C. J. Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4070–4074. doi: 10.1073/pnas.81.13.4070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Mattoo A. K., Edelman M. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1497–1501. doi: 10.1073/pnas.84.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohad I., Kyle D. J., Arntzen C. J. Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol. 1984 Aug;99(2):481–485. doi: 10.1083/jcb.99.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peter G. F., Thornber J. P. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem. 1991 Sep 5;266(25):16745–16754. [PubMed] [Google Scholar]
  12. Pulles M. P., Van Gorkom H. J., Verschoor G. A. Primary reactions of photosystem II at low pH. 2. Light-induced changes of absorbance and electron spin resonance in spinach chloroplasts. Biochim Biophys Acta. 1976 Jul 9;440(1):98–106. doi: 10.1016/0005-2728(76)90116-x. [DOI] [PubMed] [Google Scholar]
  13. Seibert M., Picorel R., Rubin A. B., Connolly J. S. Spectral, Photophysical, and Stability Properties of Isolated Photosystem II Reaction Center. Plant Physiol. 1988 Jun;87(2):303–306. doi: 10.1104/pp.87.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith B. M., Morrissey P. J., Guenther J. E., Nemson J. A., Harrison M. A., Allen J. F., Melis A. Response of the Photosynthetic Apparatus in Dunaliella salina (Green Algae) to Irradiance Stress. Plant Physiol. 1990 Aug;93(4):1433–1440. doi: 10.1104/pp.93.4.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES