Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Sep;103(1):205–212. doi: 10.1104/pp.103.1.205

Uncoating of clathrin-coated vesicles by uncoating ATPase from developing peas.

T Kirsch 1, L Beevers 1
PMCID: PMC158964  PMID: 8208846

Abstract

A cytosolic ATPase (an enzyme that dissociates clathrin from clathrin-coated vesicles in the presence of ATP) was isolated from developing pea (Pisum sativum L.) cotyledons using chromatography on ATP-agarose. After chromatography on phenyl Sepharose, the fraction with uncoating activity was enriched in a doublet of 70-kD peptides. Using chromatofocusing, it was possible to produce fractions enriched in the upper component of the doublet of 70-kD peptides; these fractions still retained ATP-dependent uncoating activity. In western blot analysis, antibodies against a member of the 70-kD family of heat-shock proteins interacted with the upper component of the doublet of the 70-kD peptides from the phenyl Sepharose-purified fractions. On the basis of these data, it appears that the uncoating ATPase may be a member of the 70-kD family of heat-shock proteins. The uncoating activity removed clathrin from both pea and bovine brain clathrin-coated vesicles. The uncoating ATPase from bovine brain also uncoated coated vesicles from peas. Pea clathrin-coated vesicles that were prepared by three different methods were uncoated to different extents by the plant uncoating ATPase. Different populations of clathrin-coated vesicles from the same preparation showed differential sensitivity to the uncoating ATPase. Limited proteolysis of the clathrin light chains in the protein coat abolished the susceptibility of the clathrin-coated vesicles to the uncoating ATPase. The properties of the uncoating ATPase isolated from developing pea cotyledons are similar to those of uncoating ATPases previously described from mammalian and yeast systems. It appears that despite dissimilarities in composition of the clathrin components of the vesicles from the respective sources, uncoating is achieved by a common mechanism.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bomsel M., de Paillerets C., Weintraub H., Alfsen A. Biochemical and functional characterization of three types of coated vesicles in bovine adrenocortical cells: implication in the intracellular traffic. Biochemistry. 1988 Sep 6;27(18):6806–6813. doi: 10.1021/bi00418a024. [DOI] [PubMed] [Google Scholar]
  2. Braell W. A., Schlossman D. M., Schmid S. L., Rothman J. E. Dissociation of clathrin coats coupled to the hydrolysis of ATP: role of an uncoating ATPase. J Cell Biol. 1984 Aug;99(2):734–741. doi: 10.1083/jcb.99.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell C. H., Rome L. H. Coated vesicles from rat liver and calf brain contain lysosomal enzymes bound to mannose 6-phosphate receptors. J Biol Chem. 1983 Nov 10;258(21):13347–13352. [PubMed] [Google Scholar]
  4. Chappell T. G., Welch W. J., Schlossman D. M., Palter K. B., Schlesinger M. J., Rothman J. E. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell. 1986 Apr 11;45(1):3–13. doi: 10.1016/0092-8674(86)90532-5. [DOI] [PubMed] [Google Scholar]
  5. Dunbar B. S., Schwoebel E. D. Preparation of polyclonal antibodies. Methods Enzymol. 1990;182:663–670. doi: 10.1016/0076-6879(90)82051-3. [DOI] [PubMed] [Google Scholar]
  6. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  7. Greene L. E., Eisenberg E. Dissociation of clathrin from coated vesicles by the uncoating ATPase. J Biol Chem. 1990 Apr 25;265(12):6682–6687. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem. 1986 Jun;155(2):243–248. doi: 10.1016/0003-2697(86)90432-x. [DOI] [PubMed] [Google Scholar]
  10. Nandi P. K., Irace G., Van Jaarsveld P. P., Lippoldt R. E., Edelhoch H. Instability of coated vesicles in concentrated sucrose solutions. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5881–5885. doi: 10.1073/pnas.79.19.5881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schlossman D. M., Schmid S. L., Braell W. A., Rothman J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol. 1984 Aug;99(2):723–733. doi: 10.1083/jcb.99.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES