Abstract
Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article (N. Yalpani, J. Leon, M.A. Lawton, I. Raskin [1993] Plant Physiol 103: 315-321) shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco (Nicotiana tabacum L. cv Xanthi-nc) catalyze the 2-hydroxylation of BA to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h-1 g-1 fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[deg]C. TMV induction of BA2H activity and SA accumulation were inhibited when inoculated tobacco plants were incubated at 32[deg]C. However, when inoculated plants were incubated for 4 d at 32[deg]C and then transferred to 24[deg]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[deg]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco.
Full Text
The Full Text of this article is available as a PDF (602.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alibert G., Ranjeva R. Recherches sur les enzymes catalysant la biosynthese des acides phénoliques chez Quercus pedunculata (EHRH.): I - Formation des premiers termes des series cinnamique et benzöique. FEBS Lett. 1971 Nov 15;19(1):11–14. doi: 10.1016/0014-5793(71)80593-8. [DOI] [PubMed] [Google Scholar]
- Brough D. E., Cleghon V., Klessig D. F. Construction, characterization, and utilization of cell lines which inducibly express the adenovirus DNA-binding protein. Virology. 1992 Oct;190(2):624–634. doi: 10.1016/0042-6822(92)90900-a. [DOI] [PubMed] [Google Scholar]
- Donaldson R. P., Luster D. G. Multiple forms of plant cytochromes p-450. Plant Physiol. 1991 Jul;96(3):669–674. doi: 10.1104/pp.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enyedi A. J., Raskin I. Induction of UDP-Glucose:Salicylic Acid Glucosyltransferase Activity in Tobacco Mosaic Virus-Inoculated Tobacco (Nicotiana tabacum) Leaves. Plant Physiol. 1993 Apr;101(4):1375–1380. doi: 10.1104/pp.101.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enyedi A. J., Yalpani N., Silverman P., Raskin I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2480–2484. doi: 10.1073/pnas.89.6.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabriac B., Werck-Reichhart D., Teutsch H., Durst F. Purification and immunocharacterization of a plant cytochrome P450: the cinnamic acid 4-hydroxylase. Arch Biochem Biophys. 1991 Jul;288(1):302–309. doi: 10.1016/0003-9861(91)90199-s. [DOI] [PubMed] [Google Scholar]
- Grand C., Sarni F., Lamb C. J. Rapid induction by fungal elicitor of the synthesis of cinnamyl-alcohol dehydrogenase, a specific enzyme of lignin synthesis. Eur J Biochem. 1987 Nov 16;169(1):73–77. doi: 10.1111/j.1432-1033.1987.tb13582.x. [DOI] [PubMed] [Google Scholar]
- Karp F., Mihaliak C. A., Harris J. L., Croteau R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch Biochem Biophys. 1990 Jan;276(1):219–226. doi: 10.1016/0003-9861(90)90029-x. [DOI] [PubMed] [Google Scholar]
- Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
- Malamy J., Carr J. P., Klessig D. F., Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. doi: 10.1126/science.250.4983.1002. [DOI] [PubMed] [Google Scholar]
- Métraux J. P., Signer H., Ryals J., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W., Inverardi B. Increase in salicylic Acid at the onset of systemic acquired resistance in cucumber. Science. 1990 Nov 16;250(4983):1004–1006. doi: 10.1126/science.250.4983.1004. [DOI] [PubMed] [Google Scholar]
- Potts J. R., Weklych R., Conn E. E., Rowell J. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J Biol Chem. 1974 Aug 25;249(16):5019–5026. [PubMed] [Google Scholar]
- Stewart C. B., Schuler M. A. Antigenic Crossreactivity between Bacterial and Plant Cytochrome P-450 Monoxygenases. Plant Physiol. 1989 Jun;90(2):534–541. doi: 10.1104/pp.90.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter M. H., Grima-Pettenati J., Grand C., Boudet A. M., Lamb C. J. Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5546–5550. doi: 10.1073/pnas.85.15.5546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yalpani N., Leon J., Lawton M. A., Raskin I. Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiol. 1993 Oct;103(2):315–321. doi: 10.1104/pp.103.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerlin A., Durst F. Aryl hydroxylation of the herbicide diclofop by a wheat cytochrome p-450 monooxygenase : substrate specificity and physiological activity. Plant Physiol. 1992 Oct;100(2):874–881. doi: 10.1104/pp.100.2.874. [DOI] [PMC free article] [PubMed] [Google Scholar]