Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Oct;103(2):329–334. doi: 10.1104/pp.103.2.329

Biochemical Basis of Resistance of Tobacco Callus Tissue Cultures to Hydroxyphenylethylamines.

J Negrel 1, F Javelle 1, M Paynot 1
PMCID: PMC158988  PMID: 12231940

Abstract

It has been reported that hydroxyphenylethylamines, such as tyramine and octopamine, are toxic to tobacco (Nicotiana tabacum L.) callus cultures grown in the presence of auxins, whereas calli grown in the presence of cytokinins and crown gall cultures are resistant to these amines (P. Christou and K.A. Barton [1989] Plant Physiol 89: 564-568). In an attempt to understand the underlying mechanism of this resistance, we compared the fates of tyramine in tyramine-sensitive and tyramine-resistant tobacco tissue cultures (cv Xanthi nc). The very rapid formation of black-colored oxidation products from tyramine in sensitive tissues suggested that the toxicity might be caused by the oxidation of tyramine by phenol oxidases present in the tissues or released into the medium after subculture. This was confirmed through many indirect procedures (effect of exogenously added tyrosinase, induction of polyphenol oxidase [PPO] activity by auxin, etc.). The study of tyramine structure-activity relationships further suggested that the toxicity of tyramine might be due to the formation of indolequinones after oxidation by PPO. Subculture of calli grown on 2,4-dichlorophenoxyacetic acid in a medium containing benzyladenine triggered a slow decrease in PPO activity and dramatic increases in peroxidase and tyramine hydroxycinnamoyl transferase (THT) activities. THT was undetectable in calli grown on 2,4-dichlorophenoxyacetic acid but very active in tyramine-resistant crown gall cultures. Moreover, when [3H]tyramine was fed in vivo to tyramine-resistant tissues, it was rapidly integrated into cell walls in the wound periderm formed at the periphery of the calli. Both the conjugation of tyramine and its integration into cell walls could compete with the formation of toxic quinones and therefore play a part in the resistance. Thus, it seems likely that the control of the toxicity of hydroxyphenylethylamines by cytokinins results primarily from changes in the metabolism and the compartmentation of these amines.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton K. A., Binns A. N., Matzke A. J., Chilton M. D. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell. 1983 Apr;32(4):1033–1043. doi: 10.1016/0092-8674(83)90288-x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Graham M. Y., Graham T. L. Rapid Accumulation of Anionic Peroxidases and Phenolic Polymers in Soybean Cotyledon Tissues following Treatment with Phytophthora megasperma f. sp. Glycinea Wall Glucan. Plant Physiol. 1991 Dec;97(4):1445–1455. doi: 10.1104/pp.97.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kuboi T., Yamada Y. Regulation of the enzyme activities related to lignin synthesis in cell aggregates of tobacco cell culture. Biochim Biophys Acta. 1978 Aug 17;542(2):181–190. doi: 10.1016/0304-4165(78)90014-4. [DOI] [PubMed] [Google Scholar]
  5. MAZUR A., GREEN S., SHORR E. The oxidation of adrenaline by ferritin iron and hydrogen peroxide. J Biol Chem. 1956 May;220(1):227–235. [PubMed] [Google Scholar]
  6. Mitchell S. D., Firmin J. L., Gray D. O. Enhanced 3-methoxytyramine levels in crown gall tumours and other undifferentiated plant tissues. Biochem J. 1984 Aug 1;221(3):891–895. doi: 10.1042/bj2210891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Olivier C., Casseyre P., Vayssairat M. Les périodiques médicaux français dans le contexte international? Bull Acad Natl Med. 1989 Feb;173(2):141–147. [PubMed] [Google Scholar]
  8. Witham F. H. Effect of 2,4-dichlorophenoxyacetic Acid on the cytokinin requirement of soybean cotyledon and tobacco stem pith callus tissues. Plant Physiol. 1968 Sep;43(9):1455–1457. doi: 10.1104/pp.43.9.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES