Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Oct;103(2):407–412. doi: 10.1104/pp.103.2.407

Elicitor-Induced Changes in Ca2+ Influx, K+ Efflux, and 4-Hydroxybenzoic Acid Synthesis in Protoplasts of Daucus carota L.

M Bach 1, J P Schnitzler 1, H U Seitz 1
PMCID: PMC158997  PMID: 12231948

Abstract

Suspension-cultured carrot cells (Daucus carota) and their protoplasts respond to a fungal elicitor prepared from the culture medium of Pythium aphanidermatum by accumulating 4-hydroxybenzoic acid (4-HBA). Protoplasts release the compound into the culture medium. Using 45CaCl2 as a tracer, we were able to demonstrate that the secretion of 4-HBA is preceded by a rapid increase in the Ca2+ influx and a concomitant K+ efflux. If the increased Ca2+ influx was prevented by ethyleneglycol-bis([beta]-aminoethylether)-N,N[prime]-tetraacetic acid, 4-HBA synthesis was inhibited by 70%. These results are discussed with regard to signal transduction from the plasma membrane to the nucleus of carrot protoplasts.

Full Text

The Full Text of this article is available as a PDF (599.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lee S. C., West C. A. Polygalacturonase from Rhizopus stolonifer, an Elicitor of Casbene Synthetase Activity in Castor Bean (Ricinus communis L.) Seedlings. Plant Physiol. 1981 Apr;67(4):633–639. doi: 10.1104/pp.67.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES