Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Oct;103(2):501–508. doi: 10.1104/pp.103.2.501

Covalent modification of a highly reactive and essential lysine residue of ribulose-1,5-bisphosphate carboxylase/oxygenase activase.

M E Salvucci 1
PMCID: PMC159009  PMID: 8029335

Abstract

Chemical modification of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase with water-soluble N-hydroxysuccinimide esters was used to identify a reactive lysyl residue that is essential for activity. Incubation of Rubisco activase with sulfosuccinimidyl-7-amino-4-methylcoumarin-3-acetate (AMCA-sulfo-NHS) or sulfosuccinimidyl-acetate (sulfo-NHS-acetate) caused progressive inactivation of ATPase activity and concomitant loss of the ability to activate Rubisco. AMCA-sulfo-NHS was the more potent inactivator of Rubisco activase, exhibiting a second-order rate constant for inactivation of 239 M-1 s-1 compared to 21 M-1 s-1 for sulfo-NHS-acetate. Inactivation of enzyme activity by AMCA-sulfo-NHS correlated with the incorporation of 1.9 mol of AMCA per mol of 42-kD Rubisco activase monomer. ADP, a competitive inhibitor of Rubisco activase, afforded considerable protection against inactivation of Rubisco activase and decreased the amount of AMCA incorporated into the Rubisco activase monomer. Sequence analysis of the major labeled peptide from AMCA-sulfo-NHS-modified enzyme showed that the primary site of modification was lysine-247 (K247) in the tetrapeptide methionine-glutamic acid-lysine-phenylalanine. Upon complete inactivation of ATPase activity, modification of K247 accounted for 1 mol of AMCA incorporated per mol of Rubisco activase monomer. Photoaffinity labeling of AMCA-sulfo-NHS- and sulfo-NHS-acetate-modified Rubisco activase with ATP analogs derivatized on either the adenine base or on the gamma-phosphate showed that K247 is not essential for the binding of adenine nucleotides per se. Instead, the data indicated that the essentiality of K247 is probably due to an involvement of this highly reactive, species-invariant residue in an obligatory interaction that occurs between the protein and the nucleotide phosphate during catalysis.

Full Text

The Full Text of this article is available as a PDF (841.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Chavan A. J., Richardson S. K., Kim H., Haley B. E., Watt D. S. Forskolin photoaffinity probes for the evaluation of tubulin binding sites. Bioconjug Chem. 1993 Jul-Aug;4(4):268–274. doi: 10.1021/bc00022a004. [DOI] [PubMed] [Google Scholar]
  3. Groutas W. C., Venkataraman R., Brubaker M. J., Stanga M. A. Inhibition of human leukocyte elastase by phosphate esters of N-hydroxysuccinimide and its derivatives: direct observation of a phosphorylated enzyme by 31P nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Apr 30;30(17):4132–4136. doi: 10.1021/bi00231a004. [DOI] [PubMed] [Google Scholar]
  4. Holbrook G. P., Galasinski S. C., Salvucci M. E. Regulation of 2-carboxyarabinitol 1-phosphatase. Plant Physiol. 1991 Nov;97(3):894–899. doi: 10.1104/pp.97.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Klein R. R., Salvucci M. E. Photoaffinity Labeling of Mature and Precursor Forms of the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase after Expression in Escherichia coli. Plant Physiol. 1992 Feb;98(2):546–553. doi: 10.1104/pp.98.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lilley R. M., Portis A. R. Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) by rubisco activase : effects of some sugar phosphates. Plant Physiol. 1990 Sep;94(1):245–250. doi: 10.1104/pp.94.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lorimer G. H., Miziorko H. M. Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+. Biochemistry. 1980 Nov 11;19(23):5321–5328. doi: 10.1021/bi00564a027. [DOI] [PubMed] [Google Scholar]
  8. Maroux S., Rovery M., Desnuelle P. Hydrolysis by bovine trypsin of some aromatic bonds in high molecular weight peptides. Biochim Biophys Acta. 1966 Jul 6;122(1):147–150. doi: 10.1016/0926-6593(66)90098-1. [DOI] [PubMed] [Google Scholar]
  9. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Potter R. L., Haley B. E. Photoaffinity labeling of nucleotide binding sites with 8-azidopurine analogs: techniques and applications. Methods Enzymol. 1983;91:613–633. doi: 10.1016/s0076-6879(83)91054-6. [DOI] [PubMed] [Google Scholar]
  11. Robinson S. P., Portis A. R., Jr Adenosine triphosphate hydrolysis by purified rubisco activase. Arch Biochem Biophys. 1989 Jan;268(1):93–99. doi: 10.1016/0003-9861(89)90568-7. [DOI] [PubMed] [Google Scholar]
  12. Salvucci M. E., Chavan A. J., Haley B. E. Identification of peptides from the adenine binding domains of ATP and AMP in adenylate kinase: isolation of photoaffinity-labeled peptides by metal chelate chromatography. Biochemistry. 1992 May 12;31(18):4479–4487. doi: 10.1021/bi00133a014. [DOI] [PubMed] [Google Scholar]
  13. Salvucci M. E., Rajagopalan K., Sievert G., Haley B. E., Watt D. S. Photoaffinity labeling of ribulose-1,5-bisphosphate carboxylase/oxygenase activase with ATP gamma-benzophenone. Identification of the ATP gamma-phosphate binding domain. J Biol Chem. 1993 Jul 5;268(19):14239–14244. [PubMed] [Google Scholar]
  14. Salvucci M. E. Subunit interactions of Rubisco activase: polyethylene glycol promotes self-association, stimulates ATPase and activation activities, and enhances interactions with Rubisco. Arch Biochem Biophys. 1992 Nov 1;298(2):688–696. doi: 10.1016/0003-9861(92)90467-b. [DOI] [PubMed] [Google Scholar]
  15. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  16. Shen J. B., Ogren W. L. Alteration of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activase activities by site-directed mutagenesis. Plant Physiol. 1992 Jul;99(3):1201–1207. doi: 10.1104/pp.99.3.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shen J. B., Orozco E. M., Jr, Ogren W. L. Expression of the two isoforms of spinach ribulose 1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain. J Biol Chem. 1991 May 15;266(14):8963–8968. [PubMed] [Google Scholar]
  18. Wang Z. Y., Snyder G. W., Esau B. D., Portis A. R., Ogren W. L. Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and rubisco activase. Plant Physiol. 1992 Dec;100(4):1858–1862. doi: 10.1104/pp.100.4.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES