Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Oct;103(2):565–573. doi: 10.1104/pp.103.2.565

Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds.

T Baba 1, M Nishihara 1, K Mizuno 1, T Kawasaki 1, H Shimada 1, E Kobayashi 1, S Ohnishi 1, K Tanaka 1, Y Arai 1
PMCID: PMC159016  PMID: 7518089

Abstract

Three forms of soluble starch synthase were resolved by anion-exchange chromatography of soluble extracts from immature rice (Oryza sativa L.) seeds, and each of these forms was further purified by affinity chromatograph. The 55-, 57-, and 57-kD proteins in the three preparations were identified as candidates for soluble starch synthase by western blot analysis using an antiserum against rice granule-bound starch synthase. It is interesting that the amino-terminal amino acid sequence was identical among the three proteins, except that the 55-kD protein lacked eight amino acids at the amino terminus. Thus, these three proteins are products of the same gene. The cDNA clones coding for this protein have been isolated from an immature rice seed library in lambda gt11 using synthetic oligonucleotides as probes. The deduced amino acid sequence of this protein contains a lysine-X-glycine-glycine consensus sequence for the ADP-glucose-binding site of starch and glycogen synthases. Therefore, we conclude that this protein corresponds to a form of soluble starch synthase in immature rice seeds. The precursor of the enzyme contains 626 amino acids, including a 113-residue transit peptide at the amino terminus. The mature form of soluble starch synthase shares a significant but low sequence identity with rice granule-bound starch synthase and Escherichia coli glycogen synthase. However, several regions, including the substrate-binding site, are highly conserved among these three enzymes. Blot hybridization analysis demonstrates that the gene encoding soluble starch synthase is a single-copy gene in the rice genome and is expressed in both leaves and immature seeds. These results suggest that soluble and granule-bound starch synthases play distinct roles in starch biosynthesis of plant.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Hnilo J., Larson R., Okita T. W., Morell M., Preiss J. The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J Biol Chem. 1989 Jul 25;264(21):12238–12242. [PubMed] [Google Scholar]
  2. Baba T., Kimura K., Mizuno K., Etoh H., Ishida Y., Shida O., Arai Y. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Biochem Biophys Res Commun. 1991 Nov 27;181(1):87–94. doi: 10.1016/s0006-291x(05)81385-3. [DOI] [PubMed] [Google Scholar]
  3. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  4. Boyer C. D., Preiss J. Properties of Citrate-stimulated Starch Synthesis Catalyzed by Starch Synthase I of Developing Maize Kernels. Plant Physiol. 1979 Dec;64(6):1039–1042. doi: 10.1104/pp.64.6.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Browner M. F., Nakano K., Bang A. G., Fletterick R. J. Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1443–1447. doi: 10.1073/pnas.86.5.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dry I., Smith A., Edwards A., Bhattacharyya M., Dunn P., Martin C. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J. 1992 Mar;2(2):193–202. [PubMed] [Google Scholar]
  7. Echt C. S., Schwartz D. Evidence for the Inclusion of Controlling Elements within the Structural Gene at the Waxy Locus in Maize. Genetics. 1981 Oct;99(2):275–284. doi: 10.1093/genetics/99.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furukawa K., Tagaya M., Inouye M., Preiss J., Fukui T. Identification of lysine 15 at the active site in Escherichia coli glycogen synthase. Conservation of Lys-X-Gly-Gly sequence in the bacterial and mammalian enzymes. J Biol Chem. 1990 Feb 5;265(4):2086–2090. [PubMed] [Google Scholar]
  9. Kawasaki T., Mizuno K., Baba T., Shimada H. Molecular analysis of the gene encoding a rice starch branching enzyme. Mol Gen Genet. 1993 Feb;237(1-2):10–16. doi: 10.1007/BF00282778. [DOI] [PubMed] [Google Scholar]
  10. Klösgen R. B., Weil J. H. Subcellular location and expression level of a chimeric protein consisting of the maize waxy transit peptide and the beta-glucuronidase of Escherichia coli in transgenic potato plants. Mol Gen Genet. 1991 Feb;225(2):297–304. doi: 10.1007/BF00269862. [DOI] [PubMed] [Google Scholar]
  11. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kumar A., Larsen C. E., Preiss J. Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADP-glucose:alpha-1,4-glucan, 4-glucosyltransferase as deduced from the nucleotide sequence of the glgA gene. J Biol Chem. 1986 Dec 5;261(34):16256–16259. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Mizuno K., Kawasaki T., Shimada H., Satoh H., Kobayashi E., Okumura S., Arai Y., Baba T. Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem. 1993 Sep 5;268(25):19084–19091. [PubMed] [Google Scholar]
  15. Mizuno K., Kimura K., Arai Y., Kawasaki T., Shimada H., Baba T. Starch branching enzymes from immature rice seeds. J Biochem. 1992 Nov;112(5):643–651. doi: 10.1093/oxfordjournals.jbchem.a123953. [DOI] [PubMed] [Google Scholar]
  16. NELSON O. E., RINES H. W. The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun. 1962 Oct 31;9:297–300. doi: 10.1016/0006-291x(62)90043-8. [DOI] [PubMed] [Google Scholar]
  17. Ozbun J. L., Hawker J. S., Preiss J. Adenosine diphosphoglucose-starch glucosyltransferases from developing kernels of waxy maize. Plant Physiol. 1971 Dec;48(6):765–769. doi: 10.1104/pp.48.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ozbun J. L., Hawker J. S., Preiss J. Soluble adenosine diphosphate glucose- -1,4-glucan -4-glucosyltransferases from spinach leaves. Biochem J. 1972 Feb;126(4):953–963. doi: 10.1042/bj1260953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schmidt G. W., Mishkind M. L. The transport of proteins into chloroplasts. Annu Rev Biochem. 1986;55:879–912. doi: 10.1146/annurev.bi.55.070186.004311. [DOI] [PubMed] [Google Scholar]
  20. Schwartz B. A., Gray G. R. Proteins containing reductively aminated disaccharides. Synthesis and chemical characterization. Arch Biochem Biophys. 1977 Jun;181(2):542–549. doi: 10.1016/0003-9861(77)90261-2. [DOI] [PubMed] [Google Scholar]
  21. Shure M., Wessler S., Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983 Nov;35(1):225–233. doi: 10.1016/0092-8674(83)90225-8. [DOI] [PubMed] [Google Scholar]
  22. Wang Z. Y., Wu Z. L., Xing Y. Y., Zheng F. G., Guo X. L., Zhang W. G., Hong M. M. Nucleotide sequence of rice waxy gene. Nucleic Acids Res. 1990 Oct 11;18(19):5898–5898. doi: 10.1093/nar/18.19.5898. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES