Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Oct;103(2):585–591. doi: 10.1104/pp.103.2.585

A Purified Zinc Protease of Pea Chloroplasts, EP1, Degrades the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

T P Bushnell 1, D Bushnell 1, A T Jagendorf 1
PMCID: PMC159018  PMID: 12231963

Abstract

A previously reported endopeptidase (EP1) from pea chloroplasts was purified over 11,000-fold using a four-step protocol involving ultrafiltration, sucrose gradient centrifugation, isoelectric focusing, and high performance liquid chromatography gel filtration. The enzyme was determined to be a metalloprotease requiring bound Zn2+ and added Mg2+ or Ca2+ for proper activity. Its localization in the stroma of pea chloroplasts was confirmed by demonstrating its insensitivity to thermolysin when the envelope was intact. A contaminating serine protease that attacks EP1 was found. The contaminating protease was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride, but not by o-phenanthroline, whereas EP1 sensitivities were the reverse. EP1 is able to hydrolyze the large subunit of native ribulose-1,5-bisphosphate carboxylase/oxygenase under physiological conditions.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ciesiolka T., Gabius H. J. An 8- to 10-fold enhancement in sensitivity for quantitation of proteins by modified application of colloidal gold. Anal Biochem. 1988 Feb 1;168(2):280–283. doi: 10.1016/0003-2697(88)90319-3. [DOI] [PubMed] [Google Scholar]
  2. Cline K., Werner-Washburne M., Andrews J., Keegstra K. Thermolysin is a suitable protease for probing the surface of intact pea chloroplasts. Plant Physiol. 1984 Jul;75(3):675–678. doi: 10.1104/pp.75.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cuming A. C., Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Control of messenger RNA activity by light. Eur J Biochem. 1981 Aug;118(1):71–80. doi: 10.1111/j.1432-1033.1981.tb05487.x. [DOI] [PubMed] [Google Scholar]
  4. Fish L. E., Jagendorf A. T. High rates of protein synthesis by isolated chloroplasts. Plant Physiol. 1982 Oct;70(4):1107–1114. doi: 10.1104/pp.70.4.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gray J. C., Hird S. M., Dyer T. A. Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol. 1990 Dec;15(6):947–950. doi: 10.1007/BF00039435. [DOI] [PubMed] [Google Scholar]
  6. Greenberg B. M., Gaba V., Canaani O., Malkin S., Mattoo A. K., Edelman M. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6617–6620. doi: 10.1073/pnas.86.17.6617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Häuser I., Dehesh K., Apel K. The proteolytic degradation in vitro of the NADPH-protochlorophyllide oxidoreductase of barley (Hordeum vulgare L.). Arch Biochem Biophys. 1984 Feb 1;228(2):577–586. doi: 10.1016/0003-9861(84)90025-0. [DOI] [PubMed] [Google Scholar]
  8. Kuwabara T. Characterization of a prolyl endopeptidase from spinach thylakoids. FEBS Lett. 1992 Mar 30;300(2):127–130. doi: 10.1016/0014-5793(92)80179-k. [DOI] [PubMed] [Google Scholar]
  9. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem. 1986 Jun;155(2):243–248. doi: 10.1016/0003-2697(86)90432-x. [DOI] [PubMed] [Google Scholar]
  10. Liu X. Q., Jagendorf A. T. Neutral peptidases in the stroma of pea chloroplasts. Plant Physiol. 1986 Jun;81(2):603–608. doi: 10.1104/pp.81.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mattoo A. K., Hoffman-Falk H., Marder J. B., Edelman M. Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1380–1384. doi: 10.1073/pnas.81.5.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miyadai K., Mae T., Makino A., Ojima K. Characteristics of ribulose-1,5-bisphosphate carboxylase/oxygenase degradation by lysates of mechanically isolated chloroplasts from wheat leaves. Plant Physiol. 1990 Apr;92(4):1215–1219. doi: 10.1104/pp.92.4.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oblong J. E., Lamppa G. K. Identification of two structurally related proteins involved in proteolytic processing of precursors targeted to the chloroplast. EMBO J. 1992 Dec;11(12):4401–4409. doi: 10.1002/j.1460-2075.1992.tb05540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Portis A. R. Evidence of a Low Stromal Mg Concentration in Intact Chloroplasts in the Dark: I. STUDIES WITH THE IONOPHORE A23187. Plant Physiol. 1981 May;67(5):985–989. doi: 10.1104/pp.67.5.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Portis A. R., Jr, Heldt H. W. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim Biophys Acta. 1976 Dec 6;449(3):434–436. doi: 10.1016/0005-2728(76)90154-7. [DOI] [PubMed] [Google Scholar]
  16. Robertson E. F., Dannelly H. K., Malloy P. J., Reeves H. C. Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Anal Biochem. 1987 Dec;167(2):290–294. doi: 10.1016/0003-2697(87)90166-7. [DOI] [PubMed] [Google Scholar]
  17. Schmidt G. W., Mishkind M. L. Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci U S A. 1983 May;80(9):2632–2636. doi: 10.1073/pnas.80.9.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stoscheck C. M. Protein assay sensitive at nanogram levels. Anal Biochem. 1987 Feb 1;160(2):301–305. doi: 10.1016/0003-2697(87)90051-0. [DOI] [PubMed] [Google Scholar]
  19. Wardley T. M., Bhalla P. L., Dalling M. J. Changes in the Number and Composition of Chloroplasts during Senescence of Mesophyll Cells of Attached and Detached Primary Leaves of Wheat (Triticum aestivum L.). Plant Physiol. 1984 Jun;75(2):421–424. doi: 10.1104/pp.75.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wintermans J. F., de Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta. 1965 Nov 29;109(2):448–453. doi: 10.1016/0926-6585(65)90170-6. [DOI] [PubMed] [Google Scholar]
  21. Wittenbach V. A. Breakdown of Ribulose Bisphosphate Carboxylase and Change in Proteolytic Activity during Dark-induced Senescence of Wheat Seedlings. Plant Physiol. 1978 Oct;62(4):604–608. doi: 10.1104/pp.62.4.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wittenbach V. A., Lin W., Hebert R. R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol. 1982 Jan;69(1):98–102. doi: 10.1104/pp.69.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES