Abstract
We investigated the uptake and distribution of Al in root apices of near-isogenic wheat (Triticum aestivum L.) lines differing in Al tolerance at a single locus (Alt1: aluminum tolerance). Seedlings were grown in nutrient solution that contained 100 [mu]M Al, and the roots were subsequently stained with hematoxylin, a compound that binds Al in vitro to form a colored complex. Root apices of Al-sensitive genotypes stained after short exposures to Al (10 min and 1 h), whereas apices of Al-tolerant seedlings showed less intense staining after equivalent exposures. Differential staining preceded differences observed in either root elongation or total Al concentrations of root apices (terminal 2-3 mm of root). After 4 h of exposure to 100 [mu]M Al in nutrient solution, Al-sensitive genotypes accumulated more total Al in root apices than Al-tolerant genotypes, and the differences became more marked with time. Analysis of freeze-dried root apices by x-ray microanalysis showed that Al entered root apices of Al-sensitive plants and accumulated in the epidermal layer and in the cortical layer immediately below the epidermis. Long-term exposure of sensitive apices to Al (24 h) resulted in a distribution of Al coinciding with the absence of K. Quantitation of Al in the cortical layer showed that sensitive apices accumulated 5- to 10-fold more Al than tolerant apices exposed to Al solutions for equivalent times. These data are consistent with the hypothesis that Alt1 encodes a mechanism that excludes Al from root apices.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Kinraide T. B. Proton extrusion by wheat roots exhibiting severe aluminum toxicity symptoms. Plant Physiol. 1988 Oct;88(2):418–423. doi: 10.1104/pp.88.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rincón M., Gonzales R. A. Aluminum Partitioning in Intact Roots of Aluminum-Tolerant and Aluminum-Sensitive Wheat (Triticum aestivum L.) Cultivars. Plant Physiol. 1992 Jul;99(3):1021–1028. doi: 10.1104/pp.99.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan P. R., Kochian L. V. Interaction between Aluminum Toxicity and Calcium Uptake at the Root Apex in Near-Isogenic Lines of Wheat (Triticum aestivum L.) Differing in Aluminum Tolerance. Plant Physiol. 1993 Jul;102(3):975–982. doi: 10.1104/pp.102.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tice K. R., Parker D. R., Demason D. A. Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol. 1992 Sep;100(1):309–318. doi: 10.1104/pp.100.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang G., Taylor G. J. Kinetics of Aluminum Uptake by Excised Roots of Aluminum-Tolerant and Aluminum-Sensitive Cultivars of Triticum aestivum L. Plant Physiol. 1989 Nov;91(3):1094–1099. doi: 10.1104/pp.91.3.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]