Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845

Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity.

A L Umbach 1, J N Siedow 1
PMCID: PMC159055  PMID: 12231983

Abstract

Evidence for a mixed population of covalently and noncovalently associated dimers of the cyanide-resistant alternative oxidase protein in plant mitochondria is presented. High molecular mass (oxidized) species of the alternative oxidase protein, having masses predicted for homodimers, appeared on immunoblots when the sulfhydryl reductant, dithiothreitol (DTT), was omitted from sodium dodecyl sulfate-polyacrylamide gel sample buffer. These oxidized species were observed in mitochondria from soybean (Glycine max [L.] Merr. cv Ransom), Sauromatum guttatum Schott, and mung bean (Vigna radiata [L.] R. Wilcz). Reduced species of the alternative oxidase were also present in the same mitochondrial samples. The reduced and oxidized species in isolated soybean cotyledon mitochondria could be interconverted by incubation with the sulfhydryl reagents DTT and azodicarboxylic acid bis(dimethylamide) (diamide). Treatment with chemical cross-linkers resulted in cross-linking of the reduced species, indicating a noncovalent dimeric association among the reduced alternative oxidase molecules. Alternative pathway activity of soybean mitochondria increased following reduction of the alternative oxidase protein with DTT and decreased following oxidation with diamide, indicating that electron flow through the alternative pathway is sensitive to the sulfhydryl/disulfide redox poise. In mitochondria from S. guttatum floral appendix tissue, the proportion of the reduced species increased as development progressed through thermogenesis.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdella P. M., Smith P. K., Royer G. P. A new cleavable reagent for cross-linking and reversible immobilization of proteins. Biochem Biophys Res Commun. 1979 Apr 13;87(3):734–742. doi: 10.1016/0006-291x(79)92020-5. [DOI] [PubMed] [Google Scholar]
  2. Berthold D. A., Fluke D. J., Siedow J. N. Determination of molecular mass of the aroid alternative oxidase by radiation-inactivation analysis. Biochem J. 1988 May 15;252(1):73–77. doi: 10.1042/bj2520073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berthold D. A., Siedow J. N. Partial purification of the cyanide-resistant alternative oxidase of skunk cabbage (Symplocarpus foetidus) mitochondria. Plant Physiol. 1993 Jan;101(1):113–119. doi: 10.1104/pp.101.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodenstein-Lang J., Buch A., Follmann H. Animal and plant mitochondria contain specific thioredoxins. FEBS Lett. 1989 Nov 20;258(1):22–26. doi: 10.1016/0014-5793(89)81606-0. [DOI] [PubMed] [Google Scholar]
  5. Day D. A., Dry I. B., Soole K. L., Wiskich J. T., Moore A. L. Regulation of Alternative Pathway Activity in Plant Mitochondria : Deviations from Q-Pool Behavior during Oxidation of NADH and Quinols. Plant Physiol. 1991 Mar;95(3):948–953. doi: 10.1104/pp.95.3.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dry I. B., Moore A. L., Day D. A., Wiskich J. T. Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys. 1989 Aug 15;273(1):148–157. doi: 10.1016/0003-9861(89)90173-2. [DOI] [PubMed] [Google Scholar]
  7. Elthon T. E., Nickels R. L., McIntosh L. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 1989 Apr;89(4):1311–1317. doi: 10.1104/pp.89.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
  9. Kearns A., Whelan J., Young S., Elthon T. E., Day D. A. Tissue-specific expression of the alternative oxidase in soybean and siratro. Plant Physiol. 1992 Jun;99(2):712–717. doi: 10.1104/pp.99.2.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koch C. J., Raleigh J. A. Radiolytic reduction of protein and nonprotein disulfides in the presence of formate: a chain reaction. Arch Biochem Biophys. 1991 May 15;287(1):75–84. doi: 10.1016/0003-9861(91)90390-5. [DOI] [PubMed] [Google Scholar]
  11. Korth K. L., Kaspi C. I., Siedow J. N., Levings C. S., 3rd URF13, a maize mitochondrial pore-forming protein, is oligomeric and has a mixed orientation in Escherichia coli plasma membranes. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10865–10869. doi: 10.1073/pnas.88.23.10865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marcus F., Chamberlain S. H., Chu C., Masiarz F. R., Shin S., Yee B. C., Buchanan B. B. Plant thioredoxin h: an animal-like thioredoxin occurring in multiple cell compartments. Arch Biochem Biophys. 1991 May 15;287(1):195–198. doi: 10.1016/0003-9861(91)90406-9. [DOI] [PubMed] [Google Scholar]
  13. Moore A. L., Siedow J. N. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta. 1991 Aug 23;1059(2):121–140. doi: 10.1016/s0005-2728(05)80197-5. [DOI] [PubMed] [Google Scholar]
  14. Rhoads D. M., McIntosh L. Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2122–2126. doi: 10.1073/pnas.88.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sakajo S., Minagawa N., Komiyama T., Yoshimoto A. Molecular cloning of cDNA for antimycin A-inducible mRNA and its role in cyanide-resistant respiration in Hansenula anomala. Biochim Biophys Acta. 1991 Aug 27;1090(1):102–108. doi: 10.1016/0167-4781(91)90043-l. [DOI] [PubMed] [Google Scholar]
  16. Sakajo S., Minagawa N., Yoshimoto A. Characterization of the alternative oxidase protein in the yeast Hansenula anomala. FEBS Lett. 1993 Mar 8;318(3):310–312. doi: 10.1016/0014-5793(93)80535-3. [DOI] [PubMed] [Google Scholar]
  17. Siedow J. N., Girvin M. E. Alternative Respiratory Pathway: ITS ROLE IN SEED RESPIRATION AND ITS INHIBITION BY PROPYL GALLATE. Plant Physiol. 1980 Apr;65(4):669–674. doi: 10.1104/pp.65.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yagi T., Hatefi Y. Thiols in oxidative phosphorylation: inhibition and energy-potentiated uncoupling by monothiol and dithiol modifiers. Biochemistry. 1984 May 22;23(11):2449–2455. doi: 10.1021/bi00306a020. [DOI] [PubMed] [Google Scholar]
  19. Yoshitake S., Yamada Y., Ishikawa E., Masseyeff R. Conjugation of glucose oxidase from Aspergillus niger and rabbit antibodies using N-hydroxysuccinimide ester of N-(4-carboxycyclohexylmethyl)-maleimide. Eur J Biochem. 1979 Nov;101(2):395–399. doi: 10.1111/j.1432-1033.1979.tb19731.x. [DOI] [PubMed] [Google Scholar]
  20. Zanotti F., Guerrieri F., Capozza G., Fiermonte M., Berden J., Papa S. Role of F0 and F1 subunits in the gating and coupling function of mitochondrial H(+)-ATP synthase. The effect of dithiol reagents. Eur J Biochem. 1992 Aug 15;208(1):9–16. doi: 10.1111/j.1432-1033.1992.tb17153.x. [DOI] [PubMed] [Google Scholar]
  21. Ziegler D. M. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem. 1985;54:305–329. doi: 10.1146/annurev.bi.54.070185.001513. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES