Abstract
A wild tomato species, Lycopersicon chmielewskii, accumulates high levels of soluble sugar in mature fruit and, unlike the domesticated tomato species, Lycopersicon esculentum, accumulates sucrose rather than glucose and fructose. Genetic and biochemical analyses of progeny resulting from a cross of L. chmielewskii with L. esculentum have previously indicated that the trait of sucrose accumulation is controlled by a single recessive gene and is associated with low levels of acid invertase protein in the developing fruit. Analysis of progeny from the BC2F3 generation from the L. esculentum x L. chmielewskii cross revealed that sucrose-accumulating fruit accumulate sugar in two phases corresponding to fruit expansion and fruit maturation and that the majority of the sucrose was stored in the latter phase after the fruit had reached maximum size. The only significant enzymic difference between the sucrose-accumulating and hexose-accumulating fruit was the lack of acid invertase activity in sucrose-accumulating fruit. Sucrose phosphate synthase activity did not increase in the sucrose-accumulating fruit during late development when the rate of sucrose accumulation increased. The lack of acid invertase activity in sucrose-accumulating fruit was correlated with inheritance of the L. chmielewskii acid invertase gene and the absence of acid invertase mRNA in developing fruit. This suggests that the L.chmielewskii invertase gene is transcriptionally silent in fruit and that this is the basis for sucrose accumulation in progeny derived from the interspecific cross of L. esculentum and L. chmielewskii.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Davies J. N., Hobson G. E. The constituents of tomato fruit--the influence of environment, nutrition, and genotype. Crit Rev Food Sci Nutr. 1981;15(3):205–280. doi: 10.1080/10408398109527317. [DOI] [PubMed] [Google Scholar]
- Elliott K. J., Butler W. O., Dickinson C. D., Konno Y., Vedvick T. S., Fitzmaurice L., Mirkov T. E. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol. 1993 Feb;21(3):515–524. doi: 10.1007/BF00028808. [DOI] [PubMed] [Google Scholar]
- Giaquinta R. T. Sucrose translocation and storage in the sugar beet. Plant Physiol. 1979 May;63(5):828–832. doi: 10.1104/pp.63.5.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giaquinta R. Sucrose Hydrolysis in Relation to Phloem Translocation in Beta vulgaris. Plant Physiol. 1977 Sep;60(3):339–343. doi: 10.1104/pp.60.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatch M. D., Glasziou K. T. Sugar Accumulation Cycle in Sugar Cane. II. Relationship of Invertase Activity to Sugar Content & Growth Rate in Storage Tissue of Plants Grown in Controlled Environments. Plant Physiol. 1963 May;38(3):344–348. doi: 10.1104/pp.38.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helmerhorst E., Stokes G. B. Microcentrifuge desalting: a rapid, quantitative method for desalting small amounts of protein. Anal Biochem. 1980 May 1;104(1):130–135. doi: 10.1016/0003-2697(80)90287-0. [DOI] [PubMed] [Google Scholar]
- Hubbard N. L., Huber S. C., Pharr D. M. Sucrose Phosphate Synthase and Acid Invertase as Determinants of Sucrose Concentration in Developing Muskmelon (Cucumis melo L.) Fruits. Plant Physiol. 1989 Dec;91(4):1527–1534. doi: 10.1104/pp.91.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klann E., Yelle S., Bennett A. B. Tomato fruit Acid invertase complementary DNA : nucleotide and deduced amino Acid sequences. Plant Physiol. 1992 May;99(1):351–353. doi: 10.1104/pp.99.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miron D., Schaffer A. A. Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase Activities in Developing Fruit of Lycopersicon esculentum Mill. and the Sucrose Accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol. 1991 Feb;95(2):623–627. doi: 10.1104/pp.95.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
- Robinson N. L., Hewitt J. D., Bennett A. B. Sink metabolism in tomato fruit : I. Developmental changes in carbohydrate metabolizing enzymes. Plant Physiol. 1988 Jul;87(3):727–730. doi: 10.1104/pp.87.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent T. D. Isolation of differentially expressed genes. Methods Enzymol. 1987;152:423–432. doi: 10.1016/0076-6879(87)52049-3. [DOI] [PubMed] [Google Scholar]
- Sato T., Iwatsubo T., Takahashi M., Nakagawa H., Ogura N., Mori H. Intercellular localization of acid invertase in tomato fruit and molecular cloning of a cDNA for the enzyme. Plant Cell Physiol. 1993 Mar;34(2):263–269. [PubMed] [Google Scholar]
- Sun J., Loboda T., Sung S. J., Black C. C. Sucrose Synthase in Wild Tomato, Lycopersicon chmielewskii, and Tomato Fruit Sink Strength. Plant Physiol. 1992 Mar;98(3):1163–1169. doi: 10.1104/pp.98.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yelle S., Chetelat R. T., Dorais M., Deverna J. W., Bennett A. B. Sink Metabolism in Tomato Fruit : IV. Genetic and Biochemical Analysis of Sucrose Accumulation. Plant Physiol. 1991 Apr;95(4):1026–1035. doi: 10.1104/pp.95.4.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yelle S., Hewitt J. D., Robinson N. L., Damon S., Bennett A. B. Sink Metabolism in Tomato Fruit : III. Analysis of Carbohydrate Assimilation in a Wild Species. Plant Physiol. 1988 Jul;87(3):737–740. doi: 10.1104/pp.87.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]