Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Nov;103(3):893–902. doi: 10.1104/pp.103.3.893

The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43') is encoded by the isiA gene.

R L Burnap 1, T Troyan 1, L A Sherman 1
PMCID: PMC159061  PMID: 8022940

Abstract

A chlorophyll (Chl)-protein complex designated CPVI-4 becomes the major pigment-protein complex in Synechococcus sp. PCC7942 cells grown under conditions of iron limitation. Work by Laudenbach et al. (J Bacteriol [1988] 170: 5018-5026) has identified an iron-repressible operon, designated isiAB, containing the flavodoxin gene and a gene predicted to encode a Chl-binding protein resembling CP43 of photosystem II. To test the hypothesis that the CP43-like protein is a component of the CPVI-4 complex, we have inactivated the isiAB operon in Synechococcus sp. PCC7942 using directed insertional mutagenesis. Mutant cells grown under conditions of iron limitation exhibit pronounced changes in their spectroscopic and photosynthetic properties relative to similarly grown wild-type cells. Notably, the strong 77 K fluorescence emission at 685 nm, which dominates the spectrum of iron-deficient wild-type cells, is dramatically reduced in the mutant. The loss of this emission appears to unmask the otherwise obscured photosystem II emissions at 685 and 695 nm. Most importantly, mildly denaturing gel electrophoresis shows that mutant cells no longer express the CPVI-4 complex, indicating that the isiA gene encodes a component of this abundant Chl-protein complex.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen K. D., Staehelin L. A. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system. Anal Biochem. 1991 Apr;194(1):214–222. doi: 10.1016/0003-2697(91)90170-x. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I., McSwain B. D., Tsujimoto H. Y., Wada K. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochim Biophys Acta. 1974 Aug 23;357(2):231–245. doi: 10.1016/0005-2728(74)90063-2. [DOI] [PubMed] [Google Scholar]
  3. Burnap R. L., Sherman L. A. Deletion mutagenesis in Synechocystis sp. PCC6803 indicates that the Mn-stabilizing protein of photosystem II is not essential for O2 evolution. Biochemistry. 1991 Jan 15;30(2):440–446. doi: 10.1021/bi00216a020. [DOI] [PubMed] [Google Scholar]
  4. Golden S. S. Mutagenesis of cyanobacteria by classical and gene-transfer-based methods. Methods Enzymol. 1988;167:714–727. doi: 10.1016/0076-6879(88)67083-2. [DOI] [PubMed] [Google Scholar]
  5. Guikema J. A., Freeman L., Fleming E. H. Effects of Gabaculine on Pigment Biosynthesis in Normal and Nutrient Deficient Cells of Anacystis nidulans. Plant Physiol. 1986 Sep;82(1):280–284. doi: 10.1104/pp.82.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guikema J. A., Sherman L. A. Organization and Function of Chlorophyll in Membranes of Cyanobacteria during Iron Starvation. Plant Physiol. 1983 Oct;73(2):250–256. doi: 10.1104/pp.73.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laudenbach D. E., Reith M. E., Straus N. A. Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol. 1988 Jan;170(1):258–265. doi: 10.1128/jb.170.1.258-265.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leonhardt K., Straus N. A. An iron stress operon involved in photosynthetic electron transport in the marine cyanobacterium Synechococcus sp. PCC 7002. J Gen Microbiol. 1992 Aug;138(Pt 8):1613–1621. doi: 10.1099/00221287-138-8-1613. [DOI] [PubMed] [Google Scholar]
  9. Pakrasi H. B., Goldenberg A., Sherman L. A. Membrane Development in the Cyanobacterium, Anacystis nidulans, during Recovery from Iron Starvation. Plant Physiol. 1985 Sep;79(1):290–295. doi: 10.1104/pp.79.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  11. Reddy K. J., Webb R., Sherman L. A. Bacterial RNA isolation with one hour centrifugation in a table-top ultracentrifuge. Biotechniques. 1990 Mar;8(3):250–251. [PubMed] [Google Scholar]
  12. Riethman H. C., Sherman L. A. Purification and characterization of an iron stress-induced chlorophyll-protein from the cyanobacterium Anacystis nidulans R2. Biochim Biophys Acta. 1988 Sep 14;935(2):141–151. doi: 10.1016/0005-2728(88)90211-3. [DOI] [PubMed] [Google Scholar]
  13. Sherman D. M., Sherman L. A. Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol. 1983 Oct;156(1):393–401. doi: 10.1128/jb.156.1.393-401.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Williams J. G., Szalay A. A. Stable integration of foreign DNA into the chromosome of the cyanobacterium Synechococcus R2. Gene. 1983 Sep;24(1):37–51. doi: 10.1016/0378-1119(83)90129-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES