Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Nov;103(3):911–917. doi: 10.1104/pp.103.3.911

A serine-to-threonine substitution in the triazine herbicide-binding protein in potato cells results in atrazine resistance without impairing productivity.

R J Smeda 1, P M Hasegawa 1, P B Goldsbrough 1, N K Singh 1, S C Weller 1
PMCID: PMC159063  PMID: 8022941

Abstract

A mutation of the psbA gene was identified in photoautotrophic potato (Solanum tuberosum L. cv Superior x U.S. Department of Agriculture line 66-142) cells selected for resistance to 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine (atrazine). Photoaffinity labeling with 6-azido-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine detected a thylakoid membrane protein with a M(r) of 32,000 in susceptible, but not in resistant, cells. This protein was identified as the secondary quinone acceptor of photosystem II (QB) protein. Atrazine resistance in selected cells was attributable to a mutation from AGT (serine) to ACT (threonine) in codon 264 of the psbA gene that encodes the QB protein. Although the mutant cells exhibited extreme levels of resistance to atrazine, no concomitant reductions in photosynthetic electron transport or cell growth rates compared to the unselected cells were detected. This is in contrast with the losses in productivity observed in atrazine-resistant mutants that contain a glycine-264 alteration.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowes J., Crofts A. R., Arntzen C. J. Redox Reactions on the reducing side of photosystem II in chloroplasts with altered herbicide binding properties. Arch Biochem Biophys. 1980 Apr 1;200(2):303–308. doi: 10.1016/0003-9861(80)90359-8. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cheung A. Y., Bogorad L., Van Montagu M., Schell J. Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene. Proc Natl Acad Sci U S A. 1988 Jan;85(2):391–395. doi: 10.1073/pnas.85.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galloway R. E., Mets L. J. Atrazine, bromacil, and diuron resistance in chlamydomonas: a single non-mendelian genetic locus controls the structure of the thylakoid binding site. Plant Physiol. 1984 Mar;74(3):469–474. doi: 10.1104/pp.74.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jursinic P. A., Pearcy R. W. Determination of the Rate Limiting Step for Photosynthesis in a Nearly Isonuclear Rapeseed (Brassica napus L.) Biotype Resistant to Atrazine. Plant Physiol. 1988 Dec;88(4):1195–1200. doi: 10.1104/pp.88.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Michel H., Epp O., Deisenhofer J. Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J. 1986 Oct;5(10):2445–2451. doi: 10.1002/j.1460-2075.1986.tb04520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mironov N. M., Lobanenkov V. V., Kupriianova E. I., Shapot V. S. Belki iz iadernykh fraktsii s razlichnym soderzhaniem aktivnykh genov. Biokhimiia. 1987 Apr;52(4):615–624. [PubMed] [Google Scholar]
  10. Ohad N., Hirschberg J. Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites. Plant Cell. 1992 Mar;4(3):273–282. doi: 10.1105/tpc.4.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ort D. R., Ahrens W. H., Martin B., Stoller E. W. Comparison of Photosynthetic Performance in Triazine-Resistant and Susceptible Biotypes of Amaranthus hybridus. Plant Physiol. 1983 Aug;72(4):925–930. doi: 10.1104/pp.72.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pfister K., Steinback K. E., Gardner G., Arntzen C. J. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci U S A. 1981 Feb;78(2):981–985. doi: 10.1073/pnas.78.2.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Páy A., Smith M. A., Nagy F., Márton L. Sequence of the psbA gene from wild type and triazin-resistant Nicotiana plumbaginifolia. Nucleic Acids Res. 1988 Aug 25;16(16):8176–8176. doi: 10.1093/nar/16.16.8176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sigematsu Y., Sato F., Yamada Y. The mechanism of herbicide resistance in tobacco cells with a new mutation in the q(b) protein. Plant Physiol. 1989 Mar;89(3):986–992. doi: 10.1104/pp.89.3.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stowe A. E., Holt J. S. Comparison of Triazine-Resistant and -Susceptible Biotypes of Senecio vulgaris and Their F(1) Hybrids. Plant Physiol. 1988 May;87(1):183–189. doi: 10.1104/pp.87.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES