Abstract
In an effort to obtain a developmental sequence of mutations in the Rhizobium-legume interaction within a single legume species, we have characterized the early events of nodule development in 10 nodulation mutants of sweetclover, Melilotus alba Desr. cv U389, representing five genetic loci. Both seed and root exudates from all of the sweetclover mutants induced expression of the nod genes of Rhizobium meliloti. Mutants in three loci were blocked in the early stages of root hair curling. Of these, a mutant in the sym-3 locus exhibited root hair deformations in response to inoculation with R. meliloti but produced no nodules or emerging nodule primordia, suggesting a blockage in the signal transduction events leading to nodule organogenesis. In contrast, mutants in both the sym-1 and sym-5 loci formed ineffective nodules in response to inoculation but differed slightly in the type of root hair response observed. None of these three early mutants formed infection threads. Infection threads were observed in mutant sym-2 as well as in ineffective nodules. Mutant sym-4 also formed infection threads but lacked nodules. The phenotypes observed for mutants from these five loci suggest that a secondary receptor or signal produced by the plant is required for nodule development.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caetano-Anollés G., Gresshoff P. M. Alfalfa Controls Nodulation during the Onset of Rhizobium-induced Cortical Cell Division. Plant Physiol. 1991 Feb;95(2):366–373. doi: 10.1104/pp.95.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caetano-Anollés G., Gresshoff P. M. Plant genetic control of nodulation. Annu Rev Microbiol. 1991;45:345–382. doi: 10.1146/annurev.mi.45.100191.002021. [DOI] [PubMed] [Google Scholar]
- Dickstein R., Bisseling T., Reinhold V. N., Ausubel F. M. Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev. 1988 Jun;2(6):677–687. doi: 10.1101/gad.2.6.677. [DOI] [PubMed] [Google Scholar]
- Dudley M. E., Long S. R. A non-nodulating alfalfa mutant displays neither root hair curling nor early cell division in response to Rhizobium meliloti. Plant Cell. 1989 Jan;1(1):65–72. doi: 10.1105/tpc.1.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guinel F. C., Larue T. A. Light Microscopy Study of Nodule Initiation in Pisum sativum L. cv Sparkle and in Its Low-Nodulating Mutant E2 (sym 5). Plant Physiol. 1991 Nov;97(3):1206–1211. doi: 10.1104/pp.97.3.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwig U. A., Maxwell C. A., Joseph C. M., Phillips D. A. Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti. Plant Physiol. 1990 Jan;92(1):116–122. doi: 10.1104/pp.92.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch A. M., Bhuvaneswari T. V., Torrey J. G., Bisseling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1244–1248. doi: 10.1073/pnas.86.4.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch A. M., Drake D., Jacobs T. W., Long S. R. Nodules are induced on alfalfa roots by Agrobacterium tumefaciens and Rhizobium trifolii containing small segments of the Rhizobium meliloti nodulation region. J Bacteriol. 1985 Jan;161(1):223–230. doi: 10.1128/jb.161.1.223-230.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kijne J. W., Smit G., Díaz C. L., Lugtenberg B. J. Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips. J Bacteriol. 1988 Jul;170(7):2994–3000. doi: 10.1128/jb.170.7.2994-3000.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. H., Larue T. A. Ethylene as a Possible Mediator of Light- and Nitrate-Induced Inhibition of Nodulation of Pisum sativum L. cv Sparkle. Plant Physiol. 1992 Nov;100(3):1334–1338. doi: 10.1104/pp.100.3.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. H., Larue T. A. Exogenous Ethylene Inhibits Nodulation of Pisum sativum L. cv Sparkle. Plant Physiol. 1992 Dec;100(4):1759–1763. doi: 10.1104/pp.100.4.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. H., Larue T. A. Pleiotropic Effects of sym-17 : A Mutation in Pisum sativum L. cv Sparkle Causes Decreased Nodulation, Altered Root and Shoot Growth, and Increased Ethylene Production. Plant Physiol. 1992 Nov;100(3):1326–1333. doi: 10.1104/pp.100.3.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. doi: 10.1038/344781a0. [DOI] [PubMed] [Google Scholar]
- Ligero F., Caba J. M., Lluch C., Olivares J. Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 1991 Nov;97(3):1221–1225. doi: 10.1104/pp.97.3.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxwell C. A., Hartwig U. A., Joseph C. M., Phillips D. A. A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti. Plant Physiol. 1989 Nov;91(3):842–847. doi: 10.1104/pp.91.3.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norris J. H., Macol L. A., Hirsch A. M. Nodulin gene expression in effective alfalfa nodules and in nodules arrested at three different stages of development. Plant Physiol. 1988 Oct;88(2):321–328. doi: 10.1104/pp.88.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters N. K., Long S. R. Alfalfa Root Exudates and Compounds which Promote or Inhibit Induction of Rhizobium meliloti Nodulation Genes. Plant Physiol. 1988 Oct;88(2):396–400. doi: 10.1104/pp.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]