Abstract
The filamentous nitrogen-fixing cyanobacterium Anabaena variabilis ATCC 29413 is capable of heterotrophic growth in complete darkness. After 6 months of continuous dark growth, both the autotrophic and heterotrophic cultures were found to have the same doubling time of 14 h. On a cellular basis, the chlorophyll content remained the same and the phycobilin content showed an increase in the dark-grown cultures. Fluorescence emission spectra at 77 K of dark-grown cells indicated that the phycobilisomes are functionally associated with photosystem II (PSII). Moreover, upon transfer to light, the dark-grown cells readily evolved oxygen. Although photosystem I (PSI) and whole chain-mediated electron transfer rates were comparable in both types of cultures, the rate of PSII-mediated electron transfer was found to be 20% higher in dark-grown cells. The PSI to PSII ratio changed from 6:1 in autotrophic cultures to 4:1 in the dark-grown cells. These changes in the rate of PSII electron transfer and in the stoichiometry between the two photosystems under dark, heterotrophic growth conditions were brought about by a preferential increase in the number of PSII units while the number of PSI units remained unchanged. The advantages of using this organism in the selection of PSI-deficient mutants are discussed.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. L., McIntosh L. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol. 1991 May;173(9):2761–2767. doi: 10.1128/jb.173.9.2761-2767.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maldener I., Lockau W., Cai Y. P., Wolk C. P. Calcium-dependent protease of the cyanobacterium Anabaena: molecular cloning and expression of the gene in Escherichia coli, sequencing and site-directed mutagenesis. Mol Gen Genet. 1991 Jan;225(1):113–120. doi: 10.1007/BF00282649. [DOI] [PubMed] [Google Scholar]
- Mannan R. M., Whitmarsh J., Nyman P., Pakrasi H. B. Directed mutagenesis of an iron-sulfur protein of the photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10168–10172. doi: 10.1073/pnas.88.22.10168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nyhus K. J., Ikeuchi M., Inoue Y., Whitmarsh J., Pakrasi H. B. Purification and characterization of the photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Biol Chem. 1992 Jun 25;267(18):12489–12495. [PubMed] [Google Scholar]
- Nyhus K. J., Thiel T., Pakrasi H. B. Targeted interruption of the psaA and psaB genes encoding the reaction-centre proteins of photosystem I in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol. 1993 Sep;9(5):979–988. doi: 10.1111/j.1365-2958.1993.tb01227.x. [DOI] [PubMed] [Google Scholar]
- Pakrasi H. B., De Ciechi P., Whitmarsh J. Site directed mutagenesis of the heme axial ligands of cytochrome b559 affects the stability of the photosystem II complex. EMBO J. 1991 Jul;10(7):1619–1627. doi: 10.1002/j.1460-2075.1991.tb07684.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pelroy R. A., Rippka R., Stanier R. Y. Metabolism of glucose by unicellular blue-green algae. Arch Mikrobiol. 1972;87(4):303–322. doi: 10.1007/BF00409131. [DOI] [PubMed] [Google Scholar]
- Raboy B., Padan E., Shilo M. Heterotrophic capacities of Plectonema boryanum. Arch Microbiol. 1976 Oct 11;110(1):77–85. doi: 10.1007/BF00416971. [DOI] [PubMed] [Google Scholar]
- Rochaix J. D. Genetic analysis of photosynthesis in prokaryotes and lower eukaryotes. Curr Opin Genet Dev. 1992 Oct;2(5):785–791. doi: 10.1016/s0959-437x(05)80140-6. [DOI] [PubMed] [Google Scholar]
- Rögner M., Nixon P. J., Diner B. A. Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem. 1990 Apr 15;265(11):6189–6196. [PubMed] [Google Scholar]
- Smart L. B., Anderson S. L., McIntosh L. Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. EMBO J. 1991 Nov;10(11):3289–3296. doi: 10.1002/j.1460-2075.1991.tb04893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart L. B., McIntosh L. Genetic inactivation of the psaB gene in Synechocystis sp. PCC 6803 disrupts assembly of photosystem I. Plant Mol Biol. 1993 Jan;21(1):177–180. doi: 10.1007/BF00039628. [DOI] [PubMed] [Google Scholar]
- Wolk C. P., Shaffer P. W. Heterotrophic micro- and macrocultures of a nitrogen-fixing cyanobacterium. Arch Microbiol. 1976 Nov 2;110(23):145–147. doi: 10.1007/BF00690221. [DOI] [PubMed] [Google Scholar]