Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Nov;103(3):993–999. doi: 10.1104/pp.103.3.993

Novel O-D-galacturonoyl esters in the pectic polysaccharides of suspension-cultured plant cells.

J A Brown 1, S C Fry 1
PMCID: PMC159074  PMID: 8022945

Abstract

Driselase digestion of uronate-6-14C-labeled primary walls of cultured spinach (Spinacia oleracea L.) cells yielded about 18 novel uronate-containing compounds, most of which could be hydrolyzed by cold dilute alkali to yield oligo-[14C]galacturonides. One typical Driselase digestion product (compound 17) yielded alpha-(1-->4)-D-[14C]galacturonotriose(GalA3) upon very mild treatment with alkali (50% yield of GalA3 in 7.2 min at pH 11 and 25 degrees C). One of the three galacturonate residues in compound 17 was reducible to a galactose residue with sodium borohydride, indicating that that GalA residue was esterified, via its--COOH group, to a putative alcohol. Compound 17 had a higher mobility than GalA3 on paper chromatography, indicating that the putative alcohol was relatively nonpolar. The putative alcohol could not have been methanol because Driselase readily hydrolyzed mono-, di-, and trimethyl esters of GalA3 to yield free galacturonic acid. Another Driselase digestion product (compound 12) was a derivative of GalA3 that apparently possessed two nonpolar esterified substituents: one about as labile as in compound 17, and the other approximately 10 times more stable. Compounds 12 and 17 could not labeled by in vivo feeding of [U-14C]cinnamate, suggesting that they were not phenolic conjugates. Similar but chromatographically distinguishable uronate-14C-labeled esters were obtained by Driselase digestion of walls of cultured carrot (Daucus carota L.), Paul's Scarlet rose (Rosa sp.), and tall fescue (Festuca arundinacea Schreber) cells. In spinach, the novel compounds constituted about 5% of the total galacturonate residues of the cell wall. The observations suggest that pectic polysaccharides are linked, via O-D-galacturonoyl ester bonds, to relatively hydrophobic constituents of the primary cell wall. Their possible role in wall architecture is discussed.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. A., Fry S. C. The preparation and susceptibility to hydrolysis of novel O-galacturonoyl derivatives of carbohydrates. Carbohydr Res. 1993 Feb 24;240:95–106. doi: 10.1016/0008-6215(93)84175-6. [DOI] [PubMed] [Google Scholar]
  2. DEUEL H., STUTZ E. Pectic substances and pectic enzymes. Adv Enzymol Relat Subj Biochem. 1958;20:341–382. doi: 10.1002/9780470122655.ch11. [DOI] [PubMed] [Google Scholar]
  3. Fry S. C. Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J. 1982 May 15;204(2):449–455. doi: 10.1042/bj2040449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fry S. C. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J. 1982 May 1;203(2):493–504. doi: 10.1042/bj2030493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ishii T., Thomas J., Darvill A., Albersheim P. Structure of Plant Cell Walls : XXVI. The Walls of Suspension-Cultured Sycamore Cells Contain a Family of Rhamnogalacturonan-I-Like Pectic Polysaccharides. Plant Physiol. 1989 Feb;89(2):421–428. doi: 10.1104/pp.89.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kim J. B., Carpita N. C. Changes in Esterification of the Uronic Acid Groups of Cell Wall Polysaccharides during Elongation of Maize Coleoptiles. Plant Physiol. 1992 Feb;98(2):646–653. doi: 10.1104/pp.98.2.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Selvendran R. R., O'Neill M. A. Isolation and analysis of cell walls from plant material. Methods Biochem Anal. 1987;32:25–153. doi: 10.1002/9780470110539.ch2. [DOI] [PubMed] [Google Scholar]
  8. Shedletzky E., Shmuel M., Delmer D. P., Lamport D. T. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol. 1990 Nov;94(3):980–987. doi: 10.1104/pp.94.3.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. WEIGEL H. PAPER ELECTROPHORESIS OF CARBOHYDRATES. Adv Carbohydr Chem. 1963;18:61–97. doi: 10.1016/s0096-5332(08)60240-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES