Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1123–1131. doi: 10.1104/pp.103.4.1123

Two Sweetclover (Melilotus alba Desr.) Mutants Temperature Sensitive for Chlorophyll Expression.

M A Bevins 1, S Madhavan 1, J Markwell 1
PMCID: PMC159097  PMID: 12232006

Abstract

The nonallelic sweetclover (Melilotus alba Desr.) mutants U371 (ch10/ch10 genotype) and U372 (ch11/ch11 genotype) are derived from the U389 (+/+ genotype) parental strain. Growth of the U389 strain at a temperature of 17 or 26[deg]C results in plants normally green in appearance. The U371 and U372 mutant plants grown at 26[deg]C are slightly to moderately chlorophyll (Chl) deficient and have decreased Chl b/a ratios. Growth of the mutants at 17[deg]C results in plants severely deficient in Chl a, with markedly reduced levels of carotenoids except for violaxanthin, and with negligible amounts of Chl b or apoproteins for the light-harvesting complex of photosystem II. If mutant plants grown at 17[deg]C are transferred to 26[deg]C, during the next 20 d the amount of Chl per fresh weight will increase 5-fold and both the Chl b/a ratio and the expression of the light-harvesting complex apoproteins will progressively increase. Studies of the U371 mutant during the temperature-induced greening demonstrate progressive changes in chloroplast ultra-structure and leaf carbon isotope fractionation that parallel the increases in Chl. Changes observed in the leaf carbon isotope fractionation in the mutant suggest that, in addition to the already known effects of various abiotic factors, structural and metabolic internal factors can also influence whether the limitation in CO2 fixation is at the level of diffusion or carboxylation. Such temperature-initiated progressive greening in these and similar mutants may make them useful tools to elucidate not only the biosynthesis and assembly of the photosynthetic apparatus, but also physiological phenomena such as the influence of light-driven energy production on the overall carbon isotope fractionation during photosynthesis.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen K. D., Duysen M. E., Staehelin L. A. Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat. J Cell Biol. 1988 Sep;107(3):907–919. doi: 10.1083/jcb.107.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argyroudi-Akoyunoglou J. H., Akoyunoglou G. Photoinduced changes in the chlorophyll a to chlorophyll B ratio in young bean plants. Plant Physiol. 1970 Aug;46(2):247–249. doi: 10.1104/pp.46.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Argyroudi-Akoyunoglou J. H., Castorinis A. Specificity of the chlorophyll-to-protein binding in the chlorophyll-protein complexes of the thylakoid. Arch Biochem Biophys. 1980 Apr 1;200(2):326–335. doi: 10.1016/0003-9861(80)90362-8. [DOI] [PubMed] [Google Scholar]
  4. Cammarata K. V., Schmidt G. W. In vitro reconstitution of a light-harvesting gene product: deletion mutagenesis and analyses of pigment binding. Biochemistry. 1992 Mar 17;31(10):2779–2789. doi: 10.1021/bi00125a019. [DOI] [PubMed] [Google Scholar]
  5. Chitnis P. R., Harel E., Kohorn B. D., Tobin E. M., Thornber J. P. Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etiochloroplasts. J Cell Biol. 1986 Mar;102(3):982–988. doi: 10.1083/jcb.102.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eichacker L. A., Soll J., Lauterbach P., Rüdiger W., Klein R. R., Mullet J. E. In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem. 1990 Aug 15;265(23):13566–13571. [PubMed] [Google Scholar]
  7. Goodchild D. J., Highkin H. R., Boardman N. K. The fine structure of chloroplasts in a barley mutant lacking chlorophyll B. Exp Cell Res. 1966 Oct;43(3):684–688. doi: 10.1016/0014-4827(66)90045-0. [DOI] [PubMed] [Google Scholar]
  8. Greene B. A., Staehelin L. A., Melis A. Compensatory Alterations in the Photochemical Apparatus of a Photoregulatory, Chlorophyll b-Deficient Mutant of Maize. Plant Physiol. 1988 Jun;87(2):365–370. doi: 10.1104/pp.87.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keck R. W., Dilley R. A. Chloroplast composition and structure differences in a soybean mutant. Plant Physiol. 1970 Nov;46(5):692–698. doi: 10.1104/pp.46.5.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Markwell J. P., Chelgren T. S. Chlorophyll Expression Varies with Development State in the Temperature-Sensitive ch4 Mutation of Melilotus alba. Plant Physiol. 1988 May;87(1):172–175. doi: 10.1104/pp.87.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Markwell J. P., Danko S. J., Bauwe H., Osterman J., Gorz H. J., Haskins F. A. A Temperature-Sensitive Chlorophyll b-Deficient Mutant of Sweetclover (Melilotus alba). Plant Physiol. 1986 Jun;81(2):329–334. doi: 10.1104/pp.81.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Markwell J., Osterman J. C. Occurrence of Temperature-Sensitive Phenotypic Plasticity in Chlorophyll-Deficient Mutants of Arabidopsis thaliana. Plant Physiol. 1992 Jan;98(1):392–394. doi: 10.1104/pp.98.1.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakatani H. Y., Baliga V. A clover mutant lacking the chlorophyll a- and b-containing protein antenna complexes. Biochem Biophys Res Commun. 1985 Aug 30;131(1):182–189. doi: 10.1016/0006-291x(85)91787-5. [DOI] [PubMed] [Google Scholar]
  15. Sachs M. M., Dennis E. S., Gerlach W. L., Peacock W. J. Two Alleles of Maize ALCOHOL DEHYDROGENASE 1 Have 3' Structural and Poly(a) Addition Polymorphisms. Genetics. 1986 Jun;113(2):449–467. doi: 10.1093/genetics/113.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Seemann J. R. Light adaptation/acclimation of photosynthesis and the regulation of ribulose-1,5-bisphosphate carboxylase activity in sun and shade plants. Plant Physiol. 1989 Sep;91(1):379–386. doi: 10.1104/pp.91.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yang C. M., Osterman J. C., Markwell J. Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). Biochem Genet. 1990 Feb;28(1-2):31–40. doi: 10.1007/BF00554819. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES