Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1165–1171. doi: 10.1104/pp.103.4.1165

Effects of Inhibitors of Protein Serine/Threonine Phosphatases on Pollination in Brassica.

S J Rundle 1, M E Nasrallah 1, J B Nasrallah 1
PMCID: PMC159102  PMID: 12232009

Abstract

We have examined the effect of the protein phosphatase inhibitors okadaic acid and microcystin on pollen-pistil interactions in Brassica. Inhibitor-treated flowers or floral buds were pollinated with untreated pollen and examined for pollen tube growth by fluorescence microscopy. Our results show that type 1 or type 2A serine/threonine phosphatases play a crucial role in the pollination responses of Brassica. We observed two distinct effects of protein phosphatase inhibitors on pollination: (a) the inhibition of pollen tube growth during cross-pollination in flowers, and (b) the break-down of self-incompatibility or promotion of pollen tube growth during self-pollination in flower buds just prior to anthesis. Thus, treatment of flower pistils with protein phosphatase inhibitors resulted in the inhibition of pollen tube growth at the surface of the papillar cells of the stigma in crosses between different self-incompatible Brassica oleracea strains, in an interspecific cross between B. oleracea and Brassica campestris, and in self-pollinations of a self-fertile Brassica napus cultivar. With four different self-incompatibility genotypes, treatment of mature flowers with protein phosphatase inhibitors had no effect on self-pollination response. In contrast, treatment of flower buds just prior to the anthesis stage allowed self-pollen tube invasion of papillar cells. However, the magnitude of this effect was genotype dependent, being most pronounced in the S22 genotype. The data support the conclusion that pollinations in Brassica are controlled in part by the presence of phosphorylated proteins in the papillar cells of the stigma, and that the quantity of these proteins or their levels of phosphorylation changes during stigma development.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyes D. C., Nasrallah J. B. Physical linkage of the SLG and SRK genes at the self-incompatibility locus of Brassica oleracea. Mol Gen Genet. 1993 Jan;236(2-3):369–373. doi: 10.1007/BF00277135. [DOI] [PubMed] [Google Scholar]
  2. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  3. Hou M. C., Shen C. H., Lee W. C., Lai Y. K. Okadaic acid as an inducer of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. J Cell Biochem. 1993 Jan;51(1):91–101. doi: 10.1002/jcb.240510116. [DOI] [PubMed] [Google Scholar]
  4. Huber S. C., Huber J. L. Activation of sucrose-phosphate synthase from darkened spinach leaves by an endogenous protein phosphatase. Arch Biochem Biophys. 1990 Nov 1;282(2):421–426. doi: 10.1016/0003-9861(90)90138-o. [DOI] [PubMed] [Google Scholar]
  5. MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
  6. Roberts I. N., Harrod G., Dickinson H. G. Pollen-stigma interactions in Brassica oleracea. II. The fate of stigma surface proteins following pollination and their rôle in the self-incompatibility response. J Cell Sci. 1984 Mar;66:255–264. doi: 10.1242/jcs.66.1.255. [DOI] [PubMed] [Google Scholar]
  7. Siegl G., MacKintosh C., Stitt M. Sucrose-phosphate synthase is dephosphorylated by protein phosphatase 2A in spinach leaves. Evidence from the effects of okadaic acid and microcystin. FEBS Lett. 1990 Sep 17;270(1-2):198–202. doi: 10.1016/0014-5793(90)81267-r. [DOI] [PubMed] [Google Scholar]
  8. Stein J. C., Howlett B., Boyes D. C., Nasrallah M. E., Nasrallah J. B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8816–8820. doi: 10.1073/pnas.88.19.8816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stein J. C., Nasrallah J. B. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. Plant Physiol. 1993 Mar;101(3):1103–1106. doi: 10.1104/pp.101.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wadzinski B. E., Wheat W. H., Jaspers S., Peruski L. F., Jr, Lickteig R. L., Johnson G. L., Klemm D. J. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol. 1993 May;13(5):2822–2834. doi: 10.1128/mcb.13.5.2822. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES