Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1183–1188. doi: 10.1104/pp.103.4.1183

Estimation of Bundle Sheath Cell Conductance in C4 Species and O2 Insensitivity of Photosynthesis.

R H Brown 1, G T Byrd 1
PMCID: PMC159104  PMID: 12232010

Abstract

Low conductance to CO2 of bundle sheath cells is required in C4 photosynthesis to maintain high [CO2] at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Elevated [CO2] allows high CO2 assimilation rates by this enzyme and prevents Rubisco oxygenase activity and O2 inhibition of carboxylation. Bundle sheath conductance to CO2 was estimated by chemically inhibiting phosphoenolpyruvate carboxylase and calculating the slope of the linear response of leaf CO2 uptake to [CO2]. The inhibitor 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate was supplied to detached leaves of Panicum maximum, Panicum miliaceum, and Sorghum bicolor at 4 mM. Uptake of CO2 was measured at 210 mL L-1 O2 over the CO2 concentration range of 0.34 to 28 mL L-1. Without the inhibitor, CO2 uptake increased steeply at low [CO2] and saturated at about 1 mL L-1. After inhibition, CO2 uptake was a linear function of [CO2] over much of the range tested. The slope of this CO2 response, taken as bundle sheath conductance, was 2.35, 1.96, and 1.13 mmol m-2 s-1 for P. maximum, P. miliaceum, and S. bicolor, respectively, on a leaf area basis. Conductance based on bundle sheath area was 0.76, 0.93, and 0.54 mmol m-2 s-1, respectively. Uptake of CO2 by leaves of P. maximum supplied with the inhibitor was not affected by reduction of [O2] from 210 to 20 mL L-1 over the range of [CO2] used. Because [CO2] in bundle sheath cells of inhibited leaves is likely to be much lower than ambient, the lack of O2 sensitivity of CO2 uptake cannot be ascribed to lack of O2 reaction with ribulose bisphosphate and is probably due to the low conductance of bundle sheath cells, especially at low ambient [CO2]. The likely result of reducing [O2] from 210 to 20 mL L-1 is to stimulate carboxylation of ribulose bisphosphate, thus further reducing [CO2] in bundle sheath cells and increasing CO2 diffusion to these cells from the mesophyll. However, the increase in diffusion is greatly limited by low conductance of the bundle sheath cell walls. Calculations based on estimated bundle sheath conductance show that changes in bundle sheath [CO2] of 0.085 to 0.5 mL L-1, which might be associated with reduced [O2], would have a negligible effect on CO2 uptake.

Full Text

The Full Text of this article is available as a PDF (593.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Furbank R. T., Hatch M. D. Mechanism of c(4) photosynthesis: the size and composition of the inorganic carbon pool in bundle sheath cells. Plant Physiol. 1987 Dec;85(4):958–964. doi: 10.1104/pp.85.4.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jenkins C. L. Effects of the Phosphoenolpyruvate Carboxylase Inhibitor 3,3-Dichloro-2-(Dihydroxyphosphinoylmethyl)propenoate on Photosynthesis: C(4) Selectivity and Studies on C(4) Photosynthesis. Plant Physiol. 1989 Apr;89(4):1231–1237. doi: 10.1104/pp.89.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jenkins C. L., Furbank R. T., Hatch M. D. Inorganic Carbon Diffusion between C(4) Mesophyll and Bundle Sheath Cells: Direct Bundle Sheath CO(2) Assimilation in Intact Leaves in the Presence of an Inhibitor of the C(4) Pathway. Plant Physiol. 1989 Dec;91(4):1356–1363. doi: 10.1104/pp.91.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Laing W. A. Regulation of Soybean Net Photosynthetic CO(2) Fixation by the Interaction of CO(2), O(2), and Ribulose 1,5-Diphosphate Carboxylase. Plant Physiol. 1974 Nov;54(5):678–685. doi: 10.1104/pp.54.5.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Loreto F., Harley P. C., Di Marco G., Sharkey T. D. Estimation of Mesophyll Conductance to CO(2) Flux by Three Different Methods. Plant Physiol. 1992 Apr;98(4):1437–1443. doi: 10.1104/pp.98.4.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Morot-Gaudry J. F. Oxygen effect on photosynthetic and glycolate pathways in young maize leaves. Plant Physiol. 1980 Dec;66(6):1079–1084. doi: 10.1104/pp.66.6.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES