Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1221–1226. doi: 10.1104/pp.103.4.1221

Phytotoxicity of Acetohydroxyacid Synthase Inhibitors Is Not Due to Accumulation of 2-Ketobutyrate and/or 2-Aminobutyrate.

D L Shaner 1, B K Singh 1
PMCID: PMC159109  PMID: 12232015

Abstract

Acetohydroxyacid synthase (AHAS) is the site of action of herbicides of different chemical classes, such as imidazolinones, sulfonylureas, and triazolopyrimidines. Inhibition of AHAS causes the accumulation of 2-ketobutyrate (2-KB) and 2-aminobutyrate (2-AB) (the transamination product of 2-KB), and it has been proposed that the phytotoxicity of these inhibitors is due to this accumulation. Experiments were done to determine the relationship between accumulation of 2-KB and 2-AB and the phytotoxicity of imazaquin to maize (Zea mays). Imazaquin concentrations that inhibit growth of maize plants also cause the accumulation of 2-KB and 2-AB in the shoots. Supplementation of imazaquin-treated plants with isoleucine reduced the pools of 2-KB and 2-AB in the plant but did not protect plants from the growth inhibitory effects of imazaquin. Conversely, feeding 2-AB to maize plants increased 2-KB and 2-AB pools to much higher levels than those observed in imazaquin-treated plants, yet such high pools of 2-KB and 2-AB in the plant had no significant effect on growth. These results conclusively demonstrate that growth inhibition following imazaquin treatment is not due to accumulation of 2-KB and/or 2-AB in plants. Changes in the amino acid profiles after treatment with imazaquin suggest that starvation for the branched-chain amino acids may be the primary cause of growth retardation of maize.

Full Text

The Full Text of this article is available as a PDF (566.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. LaRossa R. A., Van Dyk T. K., Smulski D. R. Toxic accumulation of alpha-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J Bacteriol. 1987 Apr;169(4):1372–1378. doi: 10.1128/jb.169.4.1372-1378.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Rhodes D., Hogan A. L., Deal L., Jamieson G. C., Haworth P. Amino Acid Metabolism of Lemna minor L. : II. Responses to Chlorsulfuron. Plant Physiol. 1987 Jul;84(3):775–780. doi: 10.1104/pp.84.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Van Dyk T. K., LaRossa R. A. Involvement of ack-pta operon products in alpha-ketobutyrate metabolism by Salmonella typhimurium. Mol Gen Genet. 1987 May;207(2-3):435–440. doi: 10.1007/BF00331612. [DOI] [PubMed] [Google Scholar]
  4. Van Dyk T. K., LaRossa R. A. Sensitivity of a Salmonella typhimurium aspC mutant to sulfometuron methyl, a potent inhibitor of acetolactate synthase II. J Bacteriol. 1986 Feb;165(2):386–392. doi: 10.1128/jb.165.2.386-392.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Van Dyk T. K., Smulski D. R., Chang Y. Y. Pleiotropic effects of poxA regulatory mutations of Escherichia coli and Salmonella typhimurium, mutations conferring sulfometuron methyl and alpha-ketobutyrate hypersensitivity. J Bacteriol. 1987 Oct;169(10):4540–4546. doi: 10.1128/jb.169.10.4540-4546.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES