Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1305–1309. doi: 10.1104/pp.103.4.1305

Increased Zinc Tolerance in Silene vulgaris (Moench) Garcke Is Not Due to Increased Production of Phytochelatins.

H Harmens 1, P R Den Hartog 1, WMT Bookum 1, JAC Verkleij 1
PMCID: PMC159120  PMID: 12232023

Abstract

The concentration of acid-soluble thiols other than reduced glutathione (SH - GSH) increases in the roots of zinc-sensitive and zinc-tolerant Silene vulgaris (Moench) Garcke after exposure to zinc for 1 to 3 d. The concentration of SH - GSH in the roots is higher in the sensitive plants than in the tolerant ones, both at equal external zinc concentrations and at zinc concentrations causing the same level of root-length growth inhibition. High performance liquid chromatography analyses show that the increase in the concentration of SH - GSH is not only due to the production of phytochelatins, but is also due to an increase in the concentration of cysteine and the production of nonidentified thiols. The cysteine concentration increases equally in the roots of sensitive and tolerant plants. The accumulation of phytochelatins is higher in the roots of the sensitive plants, whereas the chain length distribution of phytochelatins is the same in sensitive and tolerant plants. It is concluded that increased zinc tolerance in S. vulgaris is not due to increased production of phytochelatins.

Full Text

The Full Text of this article is available as a PDF (525.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Vos C. H., Vonk M. J., Vooijs R., Schat H. Glutathione Depletion Due to Copper-Induced Phytochelatin Synthesis Causes Oxidative Stress in Silene cucubalus. Plant Physiol. 1992 Mar;98(3):853–858. doi: 10.1104/pp.98.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Delhaize E., Jackson P. J., Lujan L. D., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine Synthesis in Datura innoxia and Binding with Cadmium : Role in Cadmium Tolerance. Plant Physiol. 1989 Feb;89(2):700–706. doi: 10.1104/pp.89.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jackson P. J., Unkefer C. J., Doolen J. A., Watt K., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6619–6623. doi: 10.1073/pnas.84.19.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Krotz R. M., Evangelou B. P., Wagner G. J. Relationships between Cadmium, Zinc, Cd-Peptide, and Organic Acid in Tobacco Suspension Cells. Plant Physiol. 1989 Oct;91(2):780–787. doi: 10.1104/pp.91.2.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mehra R. K., Winge D. R. Cu(I) binding to the Schizosaccharomyces pombe gamma-glutamyl peptides varying in chain lengths. Arch Biochem Biophys. 1988 Sep;265(2):381–389. doi: 10.1016/0003-9861(88)90141-5. [DOI] [PubMed] [Google Scholar]
  6. Ortiz D. F., Kreppel L., Speiser D. M., Scheel G., McDonald G., Ow D. W. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 1992 Oct;11(10):3491–3499. doi: 10.1002/j.1460-2075.1992.tb05431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
  8. Reese R. N., Wagner G. J. Effects of buthionine sulfoximine on cd-binding Peptide levels in suspension-cultured tobacco cells treated with cd, zn, or cu. Plant Physiol. 1987 Jul;84(3):574–577. doi: 10.1104/pp.84.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Reese R. N., Winge D. R. Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem. 1988 Sep 15;263(26):12832–12835. [PubMed] [Google Scholar]
  10. Schat H., Kalff M. M. Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol. 1992 Aug;99(4):1475–1480. doi: 10.1104/pp.99.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vögeli-Lange R., Wagner G. J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves : implication of a transport function for cadmium-binding peptides. Plant Physiol. 1990 Apr;92(4):1086–1093. doi: 10.1104/pp.92.4.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES