Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1311–1319. doi: 10.1104/pp.103.4.1311

Synergistic Enhancement of the Antifungal Activity of Wheat and Barley Thionins by Radish and Oilseed Rape 2S Albumins and by Barley Trypsin Inhibitors.

FRG Terras 1, HME Schoofs 1, K Thevissen 1, R W Osborn 1, J Vanderleyden 1, BPA Cammue 1, W F Broekaert 1
PMCID: PMC159121  PMID: 12232024

Abstract

Although thionins and 2S albumins are generally considered as storage proteins, both classes of seed proteins are known to inhibit the growth of pathogenic fungi. We have now found that the wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) thionin concentration required for 50% inhibition of fungal growth is lowered 2- to 73-fold when combined with 2S albumins (at sub- or noninhibitory concentrations) from radish (Raphanus sativus L.) or oilseed rape (Brassica napus L.). Furthermore, the thionin antifungal activity is synergistically enhanced (2- to 33-fold) by either the small subunit or the large subunit of the radish 2S albumins. Three other 2S albumin-like proteins, the barley trypsin inhibitor and two barley Bowman-Birk-type trypsin inhibitor isoforms, also act synergistically with the thionins (2- to 55-fold). The synergistic activity of thionins combined with 2S albumins is restricted to filamentous fungi and to some Gram-positive bacteria, whereas Gram-negative bacteria, yeast, cultured human cells, and erythrocytes do not show an increased sensitivity to thionin/albumin combinations (relative to the sensitivity to the thionins alone). Scanning electron microscopy and measurement of K+ leakage from fungal hyphae revealed that 2S albumins have the same mode of action as thionins, namely the permeabilization of the hyphal plasmalemma. Moreover, 2S albumins and thionins act synergistically in their ability to permeabilize fungal membranes.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broekaert W. F., VAN Parijs J., Leyns F., Joos H., Peumans W. J. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science. 1989 Sep 8;245(4922):1100–1102. doi: 10.1126/science.245.4922.1100. [DOI] [PubMed] [Google Scholar]
  2. Cammue B. P., De Bolle M. F., Terras F. R., Proost P., Van Damme J., Rees S. B., Vanderleyden J., Broekaert W. F. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem. 1992 Feb 5;267(4):2228–2233. [PubMed] [Google Scholar]
  3. Eckelkamp C., Ehmann B., Schopfer P. Wound-induced systemic accumulation of a transcript coding for a Bowman-Birk trypsin inhibitor-related protein in maize (Zea mays L.) seedlings. FEBS Lett. 1993 May 24;323(1-2):73–76. doi: 10.1016/0014-5793(93)81451-5. [DOI] [PubMed] [Google Scholar]
  4. Ericson M. L., Rödin J., Lenman M., Glimelius K., Josefsson L. G., Rask L. Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem. 1986 Nov 5;261(31):14576–14581. [PubMed] [Google Scholar]
  5. Hejgaard J., Jacobsen S., Svendsen I. Two antifungal thaumatin-like proteins from barley grain. FEBS Lett. 1991 Oct 7;291(1):127–131. doi: 10.1016/0014-5793(91)81119-s. [DOI] [PubMed] [Google Scholar]
  6. Krebbers E., Herdies L., De Clercq A., Seurinck J., Leemans J., Van Damme J., Segura M., Gheysen G., Van Montagu M., Vandekerckhove J. Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family. Plant Physiol. 1988 Aug;87(4):859–866. doi: 10.1104/pp.87.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leah R., Tommerup H., Svendsen I., Mundy J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991 Jan 25;266(3):1564–1573. [PubMed] [Google Scholar]
  8. Mauch F., Mauch-Mani B., Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. doi: 10.1104/pp.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mikola J., Suolinna E. M. Purification and properties of a trypsin inhibitor from barley. Eur J Biochem. 1969 Jul;9(4):555–560. doi: 10.1111/j.1432-1033.1969.tb00645.x. [DOI] [PubMed] [Google Scholar]
  10. Molina A., Segura A., García-Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 1993 Jan 25;316(2):119–122. doi: 10.1016/0014-5793(93)81198-9. [DOI] [PubMed] [Google Scholar]
  11. Odani S., Koide T., Ono T. The complete amino acid sequence of barley trypsin inhibitor. J Biol Chem. 1983 Jul 10;258(13):7998–8003. [PubMed] [Google Scholar]
  12. Sharief F. S., Li S. S. Amino acid sequence of small and large subunits of seed storage protein from Ricinus communis. J Biol Chem. 1982 Dec 25;257(24):14753–14759. [PubMed] [Google Scholar]
  13. Terras F. R., Goderis I. J., Van Leuven F., Vanderleyden J., Cammue B. P., Broekaert W. F. In Vitro Antifungal Activity of a Radish (Raphanus sativus L.) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins. Plant Physiol. 1992 Oct;100(2):1055–1058. doi: 10.1104/pp.100.2.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Terras F. R., Schoofs H. M., De Bolle M. F., Van Leuven F., Rees S. B., Vanderleyden J., Cammue B. P., Broekaert W. F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 1992 Aug 5;267(22):15301–15309. [PubMed] [Google Scholar]
  15. Terras F. R., Torrekens S., Van Leuven F., Osborn R. W., Vanderleyden J., Cammue B. P., Broekaert W. F. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 1993 Feb 1;316(3):233–240. doi: 10.1016/0014-5793(93)81299-f. [DOI] [PubMed] [Google Scholar]
  16. Vernon L. P., Rogers A. Binding properties of Pyrularia thionin and Naja naja kaouthia cardiotoxin to human and animal erythrocytes and to murine P388 cells. Toxicon. 1992 Jul;30(7):711–721. doi: 10.1016/0041-0101(92)90005-p. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES