Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1361–1367. doi: 10.1104/pp.103.4.1361

3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase.

H Tai 1, J G Jaworski 1
PMCID: PMC159127  PMID: 8290632

Abstract

A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clough R. C., Matthis A. L., Barnum S. R., Jaworski J. G. Purification and characterization of 3-ketoacyl-acyl carrier protein synthase III from spinach. A condensing enzyme utilizing acetyl-coenzyme A to initiate fatty acid synthesis. J Biol Chem. 1992 Oct 15;267(29):20992–20998. [PubMed] [Google Scholar]
  2. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  3. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  4. Hlousek-Radojcić A., Post-Beittenmiller D., Ohlrogge J. B. Expression of constitutive and tissue-specific acyl carrier protein isoforms in Arabidopsis. Plant Physiol. 1992 Jan;98(1):206–214. doi: 10.1104/pp.98.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jackowski S., Murphy C. M., Cronan J. E., Jr, Rock C. O. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. J Biol Chem. 1989 May 5;264(13):7624–7629. [PubMed] [Google Scholar]
  6. Jackowski S., Rock C. O. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J Biol Chem. 1987 Jun 5;262(16):7927–7931. [PubMed] [Google Scholar]
  7. Jaworski J. G., Clough R. C., Barnum S. R. A Cerulenin Insensitive Short Chain 3-Ketoacyl-Acyl Carrier Protein Synthase in Spinacia oleracea Leaves. Plant Physiol. 1989 May;90(1):41–44. doi: 10.1104/pp.90.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jaworski J. G., Post-Beittenmiller D., Ohlrogge J. B. Acetyl-acyl carrier protein is not a major intermediate in fatty acid biosynthesis in spinach. Eur J Biochem. 1993 May 1;213(3):981–987. doi: 10.1111/j.1432-1033.1993.tb17843.x. [DOI] [PubMed] [Google Scholar]
  9. Kater M. M., Koningstein G. M., Nijkamp H. J., Stuitje A. R. cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli. Plant Mol Biol. 1991 Oct;17(4):895–909. doi: 10.1007/BF00037070. [DOI] [PubMed] [Google Scholar]
  10. Kauppinen S., Siggaard-Andersen M., von Wettstein-Knowles P. beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun. 1988;53(6):357–370. doi: 10.1007/BF02983311. [DOI] [PubMed] [Google Scholar]
  11. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  12. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  13. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  17. Post-Beittenmiller D., Jaworski J. G., Ohlrogge J. B. In vivo pools of free and acylated acyl carrier proteins in spinach. Evidence for sites of regulation of fatty acid biosynthesis. J Biol Chem. 1991 Jan 25;266(3):1858–1865. [PubMed] [Google Scholar]
  18. Reith M. A beta-ketoacyl-acyl carrier protein synthase III gene (fabH) is encoded on the chloroplast genome of the red alga Porphyra umbilicalis. Plant Mol Biol. 1993 Jan;21(1):185–189. doi: 10.1007/BF00039630. [DOI] [PubMed] [Google Scholar]
  19. Revill W. P., Leadlay P. F. Cloning, characterization, and high-level expression in Escherichia coli of the Saccharopolyspora erythraea gene encoding an acyl carrier protein potentially involved in fatty acid biosynthesis. J Bacteriol. 1991 Jul;173(14):4379–4385. doi: 10.1128/jb.173.14.4379-4385.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES