Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Dec;103(4):1399–1406. doi: 10.1104/pp.103.4.1399

Xyloglucan Endotransglycosylase Activity Increases during Kiwifruit (Actinidia deliciosa) Ripening (Implications for Fruit Softening).

R J Redgwell 1, S C Fry 1
PMCID: PMC159132  PMID: 12232034

Abstract

The activity of xyloglucan endotransglycosylase (XET) was as-sayed in three tissue zones of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson var deliciosa cv Hayward) at harvest and at several softening stages following a postharvest ethylene treatment. At harvest, extractable XET activity per unit fresh weight in the inner pericarp (IP) and core tissue was 4.5 and 42 times higher, respectively, than in the outer pericarp (OP). Within 24 h of ethylene treatment there was an increase in the activity and specific activity of XET in all tissues that continued throughout softening. Activity increased most in the OP, where it showed a 12-fold rise 6 d after ethylene treatment compared with 4.5- and 2.5-fold increases in the IP and core tissues, respectively. Visible swelling of the cell wall in each tissue was observed 24 h after the first detectable rise in XET activity and was most pronounced in the OP, which showed the greatest percentage increase in XET activity. Xyloglucan, galactoglucomannan, and cell wall materials isolated and purified from kiwifruit OP were tested as donor substrates for kiwifruit XET. The enzyme showed activity against xyloglucan but was inactive against galactoglucomannan. XET was active against cell wall materials from unripe and ripe fruit, with swollen walls from the latter being the better substrate. The results indicate that XET may have a key role early in fruit ripening, loosening the cell wall in preparation for further modification by other cell wall-associated enzymes.

Full Text

The Full Text of this article is available as a PDF (770.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boland M. J., Hardman M. J. Kinetic studies on the thiol protease from Actinidia chinensis. FEBS Lett. 1972 Nov 1;27(2):282–284. doi: 10.1016/0014-5793(72)80641-0. [DOI] [PubMed] [Google Scholar]
  2. Farkas V., Sulova Z., Stratilova E., Hanna R., Maclachlan G. Cleavage of xyloglucan by nasturtium seed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Arch Biochem Biophys. 1992 Nov 1;298(2):365–370. doi: 10.1016/0003-9861(92)90423-t. [DOI] [PubMed] [Google Scholar]
  3. Fry S. C., Smith R. C., Renwick K. F., Martin D. J., Hodge S. K., Matthews K. J. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J. 1992 Mar 15;282(Pt 3):821–828. doi: 10.1042/bj2820821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giovannoni J. J., DellaPenna D., Bennett A. B., Fischer R. L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell. 1989 Jan;1(1):53–63. doi: 10.1105/tpc.1.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. McDougall G. J., Fry S. C. Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol. 1990 Jul;93(3):1042–1048. doi: 10.1104/pp.93.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nishitani K., Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem. 1992 Oct 15;267(29):21058–21064. [PubMed] [Google Scholar]
  7. Redgwell R. J., Melton L. D., Brasch D. J. Cell Wall Dissolution in Ripening Kiwifruit (Actinidia deliciosa) : Solubilization of the Pectic Polymers. Plant Physiol. 1992 Jan;98(1):71–81. doi: 10.1104/pp.98.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Smith R. C., Fry S. C. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J. 1991 Oct 15;279(Pt 2):529–535. doi: 10.1042/bj2790529. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES