Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jan;104(1):59–66. doi: 10.1104/pp.104.1.59

[beta]-Aminobutyric Acid Induces the Accumulation of Pathogenesis-Related Proteins in Tomato (Lycopersicon esculentum L.) Plants and Resistance to Late Blight Infection Caused by Phytophthora infestans.

Y Cohen 1, T Niderman 1, E Mosinger 1, R Fluhr 1
PMCID: PMC159162  PMID: 12232061

Abstract

Tomato (Lycopersicon esculentum L.) plants were sprayed with aqueous solutions of isomers of aminobutyric acid and were either analyzed for the accumulation of pathogenesis-related (PR) proteins or challenged with the late blight fungal agent Phytophthora infestans. The [beta] isomer of aminobutyric acid induced the accumulation of high levels of three proteins: P14a, [beta]-1,3 glucanase, and chitinase. These proteins either did not accumulate or accumulated to a much lower level in [alpha]- or [gamma]-aminobutyric acid-treated plants. Plants pretreated with [alpha]-, [beta]-, and [gamma]-aminobutyric acid were protected up to 11 d to an extent of 35, 92, and 6%, respectively, against a challenge infection with P. infestans. Protection by [beta]-aminobutyric acid was afforded against the blight even when the chemical was applied 1 d postinoculation. Examination of ethylene evolution showed that [alpha]-aminobutyric acid induced the production of 3-fold higher levels of ethylene compared with [beta]-aminobutyric acid, whereas [gamma]-aminobutyric acid induced no ethylene production. In addition, silver thiosulfate, a potent inhibitor of ethylene action, did not abolish the resistance induced by [beta]-aminobutyric acid. The results are consistent with the possibility that [beta]-aminobutyric acid protects tomato foliage against the late blight disease by a mechanism that is not mediated by ethylene and that PR proteins can be involved in induced resistance.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Cheong J. J., Hahn M. G. A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. Plant Cell. 1991 Feb;3(2):137–147. doi: 10.1105/tpc.3.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Jong A. J., Cordewener J., Lo Schiavo F., Terzi M., Vandekerckhove J., Van Kammen A., De Vries S. C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell. 1992 Apr;4(4):425–433. doi: 10.1105/tpc.4.4.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Joosten M. H., Bergmans C. J., Meulenhoff E. J., Cornelissen B. J., De Wit P. J. Purification and serological characterization of three basic 15-kilodalton pathogenesis-related proteins from tomato. Plant Physiol. 1990 Oct;94(2):585–591. doi: 10.1104/pp.94.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lotan T., Fluhr R. Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiol. 1990 Jun;93(2):811–817. doi: 10.1104/pp.93.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Métraux J. P., Signer H., Ryals J., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W., Inverardi B. Increase in salicylic Acid at the onset of systemic acquired resistance in cucumber. Science. 1990 Nov 16;250(4983):1004–1006. doi: 10.1126/science.250.4983.1004. [DOI] [PubMed] [Google Scholar]
  7. Uknes S., Mauch-Mani B., Moyer M., Potter S., Williams S., Dincher S., Chandler D., Slusarenko A., Ward E., Ryals J. Acquired resistance in Arabidopsis. Plant Cell. 1992 Jun;4(6):645–656. doi: 10.1105/tpc.4.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES