Abstract
Monospecific antibodies directed against typical domains of type 1, 2, and 3 light-harvesting complex (LHC) II apoproteins have been used (a) to identify these apoproteins on denaturing sodium dodecyl sulfate gels of barley (Hordeum vulgare) thylakoids, (b) to determine their distribution between grana and stroma membranes, and (c) to follow their accumulation during light-induced greening of etioplasts. In addition, we have studied the light-induced assembly of chlorophyll-protein complexes with a native green gel system (K.D. Allen, L.A. Staehelin [1991] Anal Biochem 194: 214-222). Western blot analysis of the three major LHCII apoprotein bands has identified the highest molecular mass band at 27.5 kD as containing the type 2 LHCII apoproteins, the middle band at 26.9 kD as containing the type 1 LHCII apoproteins, and the lowest band at 26.0 kD as containing the type 3 LHCII apoproteins. During light-induced greening of 6-d-old etiolated barley seedlings, the type 1, 2, and 3 LHCII apoproteins accumulate simultaneously and at similar rates but appear somewhat sooner (< 4 h) in thylakoids from apical than from basal (4-8 h) leaf segments. LHCI polypeptides accrue with similar kinetics, whereas the 33-kD oxygen-evolving complex polypeptides can be detected already in the 0-h light samples. During the most rapid phase of thylakoid development (8-24 h), two slightly larger (28.3 and 28.7 kD) type 2 LHCII apoproteins (precursor intermediates?) also accumulate in the thylakoids. No corresponding higher molecular mass forms of type 1 and 3 LHCII apoproteins could be detected. It is interesting that differences are still apparent in the composition of chlorophyll-protein complexes of light-control plants and those of etiolated plants greened for 8 d.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen K. D., Staehelin L. A. Biochemical Characterization of Photosystem II Antenna Polypeptides in Grana and Stroma Membranes of Spinach. Plant Physiol. 1992 Nov;100(3):1517–1526. doi: 10.1104/pp.100.3.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen K. D., Staehelin L. A. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system. Anal Biochem. 1991 Apr;194(1):214–222. doi: 10.1016/0003-2697(91)90170-x. [DOI] [PubMed] [Google Scholar]
- Apel K., Kloppstech K. The plastid membranes of barley (Hordeum vulgare). Light-induced appearance of mRNA coding for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur J Biochem. 1978 Apr 17;85(2):581–588. doi: 10.1111/j.1432-1033.1978.tb12273.x. [DOI] [PubMed] [Google Scholar]
- Baker N. R., Leech R. M. Development of Photosystem I and Photosystem II Activities in Leaves of Light-grown Maize (Zea mays). Plant Physiol. 1977 Oct;60(4):640–644. doi: 10.1104/pp.60.4.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandt J., Nielsen V. S., Thordal-Christensen H., Simpson D. J., Okkels J. S. A barley cDNA clone encoding a type III chlorophyll a/b-binding polypeptide of the light-harvesting complex II. Plant Mol Biol. 1992 Jul;19(4):699–703. doi: 10.1007/BF00026796. [DOI] [PubMed] [Google Scholar]
- Camm E. L., Green B. R. The effects of cations and trypsin on extraction of chlorophyll-protein complexes by octyl glucoside. Arch Biochem Biophys. 1982 Apr 1;214(2):563–572. doi: 10.1016/0003-9861(82)90061-3. [DOI] [PubMed] [Google Scholar]
- Clark S. E., Lamppa G. K. Determinants for cleavage of the chlorophyll a/b binding protein precursor: a requirement for a basic residue that is not universal for chloroplast imported proteins. J Cell Biol. 1991 Aug;114(4):681–688. doi: 10.1083/jcb.114.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunsmuir P. The petunia chlorophyll a/b binding protein genes: a comparison of Cab genes from different gene families. Nucleic Acids Res. 1985 Apr 11;13(7):2503–2518. doi: 10.1093/nar/13.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fling S. P., Gregerson D. S. Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal Biochem. 1986 May 15;155(1):83–88. doi: 10.1016/0003-2697(86)90228-9. [DOI] [PubMed] [Google Scholar]
- Hawkes R. The dot immunobinding assay. Methods Enzymol. 1986;121:484–491. doi: 10.1016/0076-6879(86)21048-4. [DOI] [PubMed] [Google Scholar]
- Henningsen K. W., Boynton J. E. Macromolecular physiology of plastids. 8. Pigment and membrane formation in plastids of barley greening under low light intensity. J Cell Biol. 1970 Feb;44(2):290–304. doi: 10.1083/jcb.44.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henningsen K. W., Boynton J. E. Macromolecular physiology of plastids. IX. Development of plastid membranes during greening of dark-grown barley seedlings. J Cell Sci. 1974 Jun;15(1):31–55. doi: 10.1242/jcs.15.1.31. [DOI] [PubMed] [Google Scholar]
- Jansson S., Selstam E., Gustafsson P. The rapidly phosphorylated 25 kDa polypeptide of the light- harvesting complex of photosystem II is encoded by the type 2 cab-II genes. Biochim Biophys Acta. 1990 Aug 30;1019(2):110–114. doi: 10.1016/0005-2728(90)90130-v. [DOI] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature. 1991 Mar 14;350(6314):130–134. doi: 10.1038/350130a0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leto K. J., Bell E., McIntosh L. Nuclear mutation leads to an accelerated turnover of chloroplast-encoded 48 kd and 34.5 kd polypeptides in thylakoids lacking photosystem II. EMBO J. 1985 Jul;4(7):1645–1653. doi: 10.1002/j.1460-2075.1985.tb03832.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattoo A. K., Edelman M. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1497–1501. doi: 10.1073/pnas.84.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohashi K., Tanaka A., Tsuji H. Formation of the Photosynthetic Electron Transport System during the Early Phase of Greening in Barley Leaves. Plant Physiol. 1989 Sep;91(1):409–414. doi: 10.1104/pp.91.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed J. E., Cline K., Stephens L. C., Bacot K. O., Viitanen P. V. Early events in the import/assembly pathway of an integral thylakoid protein. Eur J Biochem. 1990 Nov 26;194(1):33–42. doi: 10.1111/j.1432-1033.1990.tb19423.x. [DOI] [PubMed] [Google Scholar]
- Stayton M. M., Black M., Bedbrook J., Dunsmuir P. A novel chlorophyll a/b binding (Cab) protein gene from petunia which encodes the lower molecular weight Cab precursor protein. Nucleic Acids Res. 1986 Dec 22;14(24):9781–9796. doi: 10.1093/nar/14.24.9781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wellburn A. R., Hampp R. Appearance of photochemical function in prothylakoids during plastid development. Biochim Biophys Acta. 1979 Aug 14;547(2):380–397. doi: 10.1016/0005-2728(79)90019-7. [DOI] [PubMed] [Google Scholar]
- Yalovsky S., Schuster G., Nechushtai R. The apoprotein precursor of the major light-harvesting complex of photosystem II (LHCIIb) is inserted primarily into stromal lamellae and subsequently migrates to the grana. Plant Mol Biol. 1990 May;14(5):753–764. doi: 10.1007/BF00016508. [DOI] [PubMed] [Google Scholar]