Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jan;104(1):235–245. doi: 10.1104/pp.104.1.235

S1 destabilization and higher sensitivity to light in metribuzin-resistant mutants.

I Perewoska 1, A L Etienne 1, T Miranda 1, D Kirilovsky 1
PMCID: PMC159182  PMID: 8115546

Abstract

Mutations in the secondary quinone electron acceptor (QB) pocket of the D1 protein conferring a modification on the donor side of photosystem II (PSII) have been characterized by gene cloning and sequencing in two metribuzin-resistant mutants of Synechocystis PCC 6714. The mutations induce different herbicide resistances: in M30, a point mutation at the codon 248, isoleucine to threonine, results in resistance only to metribuzin; in M35, a single mutation, Ala251Val, confers metribuzin, atrazine, and ioxynil resistance. As with other herbicide-resistant mutants, M30 and M35 present modifications in the electron transfer between the primary quinone electron acceptor (QA) and QB. In addition, they have a modified oscillatory pattern of oxygen emission: after dark adaptation, the maximum oscillation is shifted by one flash. Both mutants have a higher concentration of the redox state in the dark-adapted state than the wild type. The mutations render the oxygen-evolving system more accessible to cell reductants. The mutation Ala251Val also confers to PSII an increased sensitivity to high light. We have already demonstrated that under light stress a double mutant, AzV (Ala251Val, Phe211Ser), lost the ability to recover the PSII activity sooner than the wild type. Here, we confirm that the modification of the alanine-251 is responsible for this specific sensitivity to high light. We conclude that specific mutations of the QB pocket modify the behavior of the cells under light stress and have an effect on the structure of the D1 protein in the other side of the membrane.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouyoub A., Vernotte C., Astier C. Functional analysis of the two homologous psbA gene copies in Synechocystis PCC 6714 and PCC 6803. Plant Mol Biol. 1993 Jan;21(2):249–258. doi: 10.1007/BF00019941. [DOI] [PubMed] [Google Scholar]
  2. Debus R. J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta. 1992 Oct 16;1102(3):269–352. doi: 10.1016/0005-2728(92)90133-m. [DOI] [PubMed] [Google Scholar]
  3. Joliot P., Joliot A. A polarographic method for detection of oxygen production and reduction of hill reagent by isolated chloroplasts. Biochim Biophys Acta. 1968 Apr 2;153(3):625–634. doi: 10.1016/0005-2728(68)90190-4. [DOI] [PubMed] [Google Scholar]
  4. Kirilovsky D. L., Ajlani G., Picaud M., Etienne A. L. Mutations responsible for high light sensitivity in an atrazine-resistant mutant of Synechocystis 6714. Plant Mol Biol. 1989 Oct;13(4):355–363. doi: 10.1007/BF00015547. [DOI] [PubMed] [Google Scholar]
  5. Kok B., Forbush B., McGloin M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol. 1970 Jun;11(6):457–475. doi: 10.1111/j.1751-1097.1970.tb06017.x. [DOI] [PubMed] [Google Scholar]
  6. Lavorel J. Matrix analysis of the oxygen evolving system of photosynthesis. J Theor Biol. 1976 Mar;57(1):171–185. doi: 10.1016/s0022-5193(76)80011-2. [DOI] [PubMed] [Google Scholar]
  7. Oettmeier W., Masson K., Höhfeld J., Meyer H. E., Pfister K., Fischer H. P. [125I]azido-ioxynil labels Val249 of the photosystem II D-1 reaction center protein. Z Naturforsch C. 1989 May-Jun;44(5-6):444–449. doi: 10.1515/znc-1989-5-617. [DOI] [PubMed] [Google Scholar]
  8. Osiewacz H. D., McIntosh L. Nucleotide sequence of a member of the psbA multigene family from the unicellular cyanobacterium Synechocystis 6803. Nucleic Acids Res. 1987 Dec 23;15(24):10585–10585. doi: 10.1093/nar/15.24.10585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ravnikar P. D., Debus R., Sevrinck J., Saetaert P., McIntosh L. Nucleotide sequence of a second psbA gene from the unicellular cyanobacterium Synechocystis 6803. Nucleic Acids Res. 1989 May 25;17(10):3991–3991. doi: 10.1093/nar/17.10.3991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rutherford A. W. Photosystem II, the water-splitting enzyme. Trends Biochem Sci. 1989 Jun;14(6):227–232. doi: 10.1016/0968-0004(89)90032-7. [DOI] [PubMed] [Google Scholar]
  11. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  12. Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]
  13. Vernotte C., Etienne A. L., Briantais J. M. Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta. 1979 Mar 15;545(3):519–527. doi: 10.1016/0005-2728(79)90160-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES