Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jan;104(1):255–261. doi: 10.1104/pp.104.1.255

Phytochelatins in Cadmium-Sensitive and Cadmium-Tolerant Silene vulgaris (Chain Length Distribution and Sulfide Incorporation).

J A De Knecht 1, M Van Dillen 1, PLM Koevoets 1, H Schat 1, JAC Verkleij 1, WHO Ernst 1
PMCID: PMC159184  PMID: 12232077

Abstract

In response to a range of Cd concentrations, the root tips of Cd-tolerant plants of Silene vulgaris exhibit a lower rate of PC production accompanied by a lower rate of longer chain PC synthesis than those of Cd-sensitive plants. At the same Cd exposure level, stable PC-Cd complexes are more rapidly formed in the roots of Cd-sensitive plants than in those of tolerant plants. At an equal PC concentration in the roots, the PC composition and the amount of sulfide incorporated per unit of PC-thiol is the same in both populations. Although these compounds might play some role in mechanisms that contribute to Cd detoxification, the ability to produce these compounds in greater amounts is not, itself, the mechanism that produces increased Cd tolerance in tolerant S. vulgaris plants.

Full Text

The Full Text of this article is available as a PDF (643.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Vos C. H., Vonk M. J., Vooijs R., Schat H. Glutathione Depletion Due to Copper-Induced Phytochelatin Synthesis Causes Oxidative Stress in Silene cucubalus. Plant Physiol. 1992 Mar;98(3):853–858. doi: 10.1104/pp.98.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Delhaize E., Jackson P. J., Lujan L. D., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine Synthesis in Datura innoxia and Binding with Cadmium : Role in Cadmium Tolerance. Plant Physiol. 1989 Feb;89(2):700–706. doi: 10.1104/pp.89.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Mutoh N., Hayashi Y. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun. 1988 Feb 29;151(1):32–39. doi: 10.1016/0006-291x(88)90555-4. [DOI] [PubMed] [Google Scholar]
  4. Rauser W. E. Isolation and Partial Purification of Cadmium-Binding Protein from Roots of the Grass Agrostis gigantea. Plant Physiol. 1984 Apr;74(4):1025–1029. doi: 10.1104/pp.74.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Reese R. N., Mehra R. K., Tarbet E. B., Winge D. R. Studies on the gamma-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem. 1988 Mar 25;263(9):4186–4192. [PubMed] [Google Scholar]
  6. Reese R. N., Wagner G. J. Properties of tobacco (Nicotiana tabacum) cadmium-binding peptide(s). Unique non-metallothionein cadmium ligands. Biochem J. 1987 Feb 1;241(3):641–647. doi: 10.1042/bj2410641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Reese R. N., Winge D. R. Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem. 1988 Sep 15;263(26):12832–12835. [PubMed] [Google Scholar]
  8. Schat H., Kalff M. M. Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol. 1992 Aug;99(4):1475–1480. doi: 10.1104/pp.99.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Speiser D. M., Abrahamson S. L., Banuelos G., Ow D. W. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex. Plant Physiol. 1992 Jul;99(3):817–821. doi: 10.1104/pp.99.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thumann J., Grill E., Winnacker E. L., Zenk M. H. Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett. 1991 Jun 17;284(1):66–69. doi: 10.1016/0014-5793(91)80763-s. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES