Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Feb;104(2):315–320. doi: 10.1104/pp.104.2.315

Covalent Cross-Links in the Cell Wall.

K Iiyama 1, TBT Lam 1, B A Stone 1
PMCID: PMC159201  PMID: 12232082

Full Text

The Full Text of this article is available as a PDF (621.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
  2. Brown J. A., Fry S. C. Novel O-D-galacturonoyl esters in the pectic polysaccharides of suspension-cultured plant cells. Plant Physiol. 1993 Nov;103(3):993–999. doi: 10.1104/pp.103.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  4. Cosgrove D. J. How do plant cell walls extend? Plant Physiol. 1993 May;102(1):1–6. doi: 10.1104/pp.102.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ishii T., Hiroi T. Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot. Carbohydr Res. 1990 Oct 10;206(2):297–310. doi: 10.1016/0008-6215(90)80069-f. [DOI] [PubMed] [Google Scholar]
  6. Ishii T. Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr Res. 1991 Oct 14;219:15–22. doi: 10.1016/0008-6215(91)89039-i. [DOI] [PubMed] [Google Scholar]
  7. Kato Y., Yamanouchi H., Hinata K., Ohsumi C., Hayashi T. Involvement of Phenolic Esters in Cell Aggregation of Suspension-Cultured Rice Cells. Plant Physiol. 1994 Jan;104(1):147–152. doi: 10.1104/pp.104.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim J. B., Carpita N. C. Changes in Esterification of the Uronic Acid Groups of Cell Wall Polysaccharides during Elongation of Maize Coleoptiles. Plant Physiol. 1992 Feb;98(2):646–653. doi: 10.1104/pp.98.2.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meyer K., Kohler A., Kauss H. Biosynthesis of ferulic acid esters of plant cell wall polysaccharides in endomembranes from parsley cells. FEBS Lett. 1991 Sep 23;290(1-2):209–212. doi: 10.1016/0014-5793(91)81261-6. [DOI] [PubMed] [Google Scholar]
  10. Showalter A. M. Structure and function of plant cell wall proteins. Plant Cell. 1993 Jan;5(1):9–23. doi: 10.1105/tpc.5.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Talbott L. D., Ray P. M. Molecular size and separability features of pea cell wall polysaccharides : implications for models of primary wall structure. Plant Physiol. 1992 Jan;98(1):357–368. doi: 10.1104/pp.98.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Waffenschmidt S., Woessner J. P., Beer K., Goodenough U. W. Isodityrosine cross-linking mediates insolubilization of cell walls in Chlamydomonas. Plant Cell. 1993 Jul;5(7):809–820. doi: 10.1105/tpc.5.7.809. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES