Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Feb;104(2):497–503. doi: 10.1104/pp.104.2.497

Expression of a Soybean (Glycine max [L.] Merr.) Seed Storage Protein Gene in Transgenic Arabidopsis thaliana and Its Response to Nutritional Stress and to Abscisic Acid Mutations.

S Naito 1, M Y Hirai 1, M Chino 1, Y Komeda 1
PMCID: PMC159223  PMID: 12232098

Abstract

Among the three subunits of [beta]-conglycinin, the 7S seed storage protein of soybean (Glycine max [L.] Merr.), expression of the [beta] subunit gene is unique. Accumulation of the [beta] subunit is enhanced in sulfate-deficient soybean plants, and its mRNA levels increase when abscisic acid (ABA) is added to the in vitro cotyledon culture medium. Transgenic Arabidopsis thaliana lines carrying a gene encoding the [beta] subunit was constructed and grown under sulfate deficiency. Accumulation of both [beta] subunit mRNA and protein were enhanced in developing A. thaliana seeds. Accumulation of one of the A. thaliana seed storage protein mRNAs was also enhanced by sulfate deficiency, although the response was weaker than that observed for the soybean [beta] subunit mRNA. When the aba1-1 or abi3-1 mutations were crossed into the transgenic A. thaliana line, accumulation of the [beta] subunit was significantly reduced, whereas accumulation of the A. thaliana seed storage protein was not greatly affected. These results indicate that soybean and A. thaliana share a common mechanism for response to sulfate deficiency and to ABA, although the sensitivity is different between the species. The transgenic A. thaliana carrying the [beta] subunit gene of [beta]-conglycinin will be a good system to analyze these responses.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen Z. L., Naito S., Nakamura I., Beachy R. N. Regulated expression of genes encoding soybean beta-conglycinins in transgenic plants. Dev Genet. 1989;10(2):112–122. doi: 10.1002/dvg.1020100207. [DOI] [PubMed] [Google Scholar]
  2. Delisle A. J., Crouch M. L. Seed Storage Protein Transcription and mRNA Levels in Brassica napus during Development and in Response to Exogenous Abscisic Acid. Plant Physiol. 1989 Oct;91(2):617–623. doi: 10.1104/pp.91.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans I. M., Gatehouse J. A., Boulter D. Regulation of storage-protein synthesis in pea (Pisum sativum L.) cotyledons under conditions of sulphur deficiency. Biochem J. 1985 Nov 15;232(1):261–265. doi: 10.1042/bj2320261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujiwara T., Hirai M. Y., Chino M., Komeda Y., Naito S. Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol. 1992 May;99(1):263–268. doi: 10.1104/pp.99.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gayler K. R., Sykes G. E. Effects of nutritional stress on the storage proteins of soybeans. Plant Physiol. 1985 Jul;78(3):582–585. doi: 10.1104/pp.78.3.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gayler K. R., Sykes G. E. beta-Conglycinins in Developing Soybean Seeds. Plant Physiol. 1981 May;67(5):958–961. doi: 10.1104/pp.67.5.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giraudat J., Hauge B. M., Valon C., Smalle J., Parcy F., Goodman H. M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992 Oct;4(10):1251–1261. doi: 10.1105/tpc.4.10.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guerche P., Tire C., De Sa F. G., De Clercq A., Van Montagu M., Krebbers E. Differential Expression of the Arabidopsis 2S Albumin Genes and the Effect of Increasing Gene Family Size. Plant Cell. 1990 May;2(5):469–478. doi: 10.1105/tpc.2.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holowach L. P., Thompson J. F., Madison J. T. Effects of exogenous methionine on storage protein composition of soybean cotyledons cultured in vitro. Plant Physiol. 1984 Mar;74(3):576–583. doi: 10.1104/pp.74.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hughes D. W., Galau G. A. Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell. 1991 Jun;3(6):605–618. doi: 10.1105/tpc.3.6.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krebbers E., Herdies L., De Clercq A., Seurinck J., Leemans J., Van Damme J., Segura M., Gheysen G., Van Montagu M., Vandekerckhove J. Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family. Plant Physiol. 1988 Aug;87(4):859–866. doi: 10.1104/pp.87.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ladin B. F., Tierney M. L., Meinke D. W., Hosángadi P., Veith M., Beachy R. N. Developmental Regulation of beta-Conglycinin in Soybean Axes and Cotyledons. Plant Physiol. 1987 May;84(1):35–41. doi: 10.1104/pp.84.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lloyd A. M., Barnason A. R., Rogers S. G., Byrne M. C., Fraley R. T., Horsch R. B. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science. 1986 Oct 24;234(4775):464–466. doi: 10.1126/science.234.4775.464. [DOI] [PubMed] [Google Scholar]
  14. Meyerowitz E. M., Pruitt R. E. Arabidopsis thaliana and Plant Molecular Genetics. Science. 1985 Sep 20;229(4719):1214–1218. doi: 10.1126/science.229.4719.1214. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES