Abstract
Sequestration of nucleotides in cells through protein binding could influence the availability of nucleotides and free energy for metabolic reactions and, therefore, affect rates of physiological processes. We have estimated the proportion of nucleotides bound to proteins in maize (Zea mays L.) root tips. Binding of nucleoside mono- and diphosphates to total root-tip protein was studied in vitro using high-performance liquid chromatography and a new ligand-binding technique. We estimate that approximately 40% of the ADP, 65% of the GDP, 50% of the AMP, and virtually all the GMP in aerobic cells are bound to proteins. In hypoxic cells, free concentrations of these nucleotides increase proportionately much more than total intracellular concentrations. Little or no binding of CDP, UDP, CMP, and UMP was observed in vitro. Binding of nucleoside triphosphate (NTP) to protein was estimated from in vivo 31P-nuclear magnetic resonance relaxation measurements. In aerobic root tips most (approximately 70%) of the NTP is free, whereas under hypoxia NTP appears predominantly bound to protein. Our results indicate that binding of nucleotides to proteins in plant cells will significantly influence levels of free purine nucleotides available to drive and regulate respiration, protein synthesis, ion transport, and other physiological processes.
Full Text
The Full Text of this article is available as a PDF (965.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson M. R., Eckermann G., Grant M., Robertson R. N. Salt accumulation and adenosine triphosphate in carrot xylem tissue. Proc Natl Acad Sci U S A. 1966 Mar;55(3):560–564. doi: 10.1073/pnas.55.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blair J. M. Magnesium, potassium, and the adenylate kinase equilibrium. Magnesium as a feedback signal from the adenine nucleotide pool. Eur J Biochem. 1970 Apr;13(2):384–390. doi: 10.1111/j.1432-1033.1970.tb00940.x. [DOI] [PubMed] [Google Scholar]
- Blum W., Hinsch K. D., Schultz G., Weiler E. W. Identification of GTP-binding proteins in the plasma membrane of higher plants. Biochem Biophys Res Commun. 1988 Oct 31;156(2):954–959. doi: 10.1016/s0006-291x(88)80936-7. [DOI] [PubMed] [Google Scholar]
- Bomsel J. L., Pradet A. Study of adenosine 5'-mono-,di- and triphosphates in plant tissues. IV. Regulation of the level of nucleotides, in vivo, by adenylate kinase: theoretical and experimental study. Biochim Biophys Acta. 1968 Aug 20;162(2):230–242. doi: 10.1016/0005-2728(68)90105-9. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- COHN M., HUGHES T. R., Jr Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem. 1962 Jan;237:176–181. [PubMed] [Google Scholar]
- Costa J. L., Dobson C. M., Kirk K. L., Poulsen F. M., Valeri C. R., Vecchione J. J. Studies of human platelets by 19F and 31P NMR. FEBS Lett. 1979 Mar 1;99(1):141–146. doi: 10.1016/0014-5793(79)80266-5. [DOI] [PubMed] [Google Scholar]
- Dahlquist F. W. The meaning of Scatchard and Hill plots. Methods Enzymol. 1978;48:270–299. doi: 10.1016/s0076-6879(78)48015-2. [DOI] [PubMed] [Google Scholar]
- Erecińska M., Wilson D. F. Regulation of cellular energy metabolism. J Membr Biol. 1982;70(1):1–14. doi: 10.1007/BF01871584. [DOI] [PubMed] [Google Scholar]
- Freeman D., Bartlett S., Radda G., Ross B. Energetics of sodium transport in the kidney. Saturation transfer 31P-NMR. Biochim Biophys Acta. 1983 Apr 5;762(2):325–336. doi: 10.1016/0167-4889(83)90087-3. [DOI] [PubMed] [Google Scholar]
- Hooks M. A., Clark R. A., Nieman R. H., Roberts J. K. Compartmentation of Nucleotides in Corn Root Tips Studied by P-NMR and HPLC. Plant Physiol. 1989 Mar;89(3):963–969. doi: 10.1104/pp.89.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hucul J. A., Henshaw E. C., Young D. A. Nucleoside diphosphate regulation of overall rates of protein biosynthesis acting at the level of initiation. J Biol Chem. 1985 Dec 15;260(29):15585–15591. [PubMed] [Google Scholar]
- Kurland C. G. The role of guanine nucleotides in protein biosynthesis. Biophys J. 1978 Jun;22(3):373–392. doi: 10.1016/S0006-3495(78)85494-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
- Roberts J. K., Lane A. N., Clark R. A., Nieman R. H. Relationships between the rate of synthesis of ATP and the concentrations of reactants and products of ATP hydrolysis in maize root tips, determined by 31P nuclear magnetic resonance. Arch Biochem Biophys. 1985 Aug 1;240(2):712–722. doi: 10.1016/0003-9861(85)90080-3. [DOI] [PubMed] [Google Scholar]
- Scopes R. K. Binding of substrates and other anions to yeast phosphoglycerate kinase. Eur J Biochem. 1978 Nov 2;91(1):119–129. doi: 10.1111/j.1432-1033.1978.tb20944.x. [DOI] [PubMed] [Google Scholar]
- Siiteri P. K. Receptor binding studies. Science. 1984 Jan 13;223(4632):191–193. doi: 10.1126/science.223.4632.191-a. [DOI] [PubMed] [Google Scholar]
- Sophianopoulos J. A., Durham S. J., Sophianopoulos A. J., Ragsdale H. L., Cropper W. P., Jr Ultrafiltration is theoretically equivalent to equilibrium dialysis but much simpler to carry out. Arch Biochem Biophys. 1978 Apr 15;187(1):132–137. doi: 10.1016/0003-9861(78)90015-2. [DOI] [PubMed] [Google Scholar]
- Srivastava D. K., Bernhard S. A. Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Regul. 1986;28:1–68. doi: 10.1016/b978-0-12-152828-7.50003-2. [DOI] [PubMed] [Google Scholar]
- Stitt M., Lilley R. M., Heldt H. W. Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol. 1982 Oct;70(4):971–977. doi: 10.1104/pp.70.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stitt M., Wirtz W., Heldt H. W. Metabolite levels during induction in the chloroplast and extrachloroplast compartments of spinach protoplasts. Biochim Biophys Acta. 1980 Nov 5;593(1):85–102. doi: 10.1016/0005-2728(80)90010-9. [DOI] [PubMed] [Google Scholar]
- Ugurbil K., Holmsen H., Shulman R. G. Adenine nucleotide storage and secretion in platelets as studied by 31P nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1979 May;76(5):2227–2231. doi: 10.1073/pnas.76.5.2227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wrobel J. A., Stinson R. A. Anion binding to yeast phosphoglycerate kinase. Eur J Biochem. 1978 Apr 17;85(2):345–350. doi: 10.1111/j.1432-1033.1978.tb12245.x. [DOI] [PubMed] [Google Scholar]