Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Feb;104(2):623–628. doi: 10.1104/pp.104.2.623

Cell-Wall Autohydrolysis in Isolated Endosperms of Lettuce (Lactuca sativa L.).

S Dutta 1, K J Bradford 1, D J Nevins 1
PMCID: PMC159240  PMID: 12232113

Abstract

Cell walls prepared from the endosperm tissue of hydrated lettuce (Lactuca sativa L.) seeds undergo autohydrolysis. Release of carbohydrates is most rapid (0.4-0.6 [mu]g per endosperm) within the 1st h of incubation in buffer, but substantial autolysis is sustained for at least 10 h. Autolysis is temperature sensitive, and the optimum rate occurs at pH 5. The rate of autolysis increases markedly in the period just prior to radicle emergence. The cell-wall polysaccharide composition in micropylar and lateral endosperm regions differs significantly; the micropylar walls are rich in arabinose and glucose with substantially lower amounts of mannose. Although walls prepared from both micropylar and lateral regions undergo autolysis, micropylar walls release carbohydrates at a higher rate than lateral walls. Autolysis products elute as large polymers when subjected to size-exclusion chromatography, suggesting that endo-enzyme activity is responsible for release of fragments containing arabinose, galactose, mannose, and uronic acids. Arabinose, galactose, mannose, and glucose are also released as monomers. As a function of time, the ratio of polymers to monomers decreases, indicating that exo-enzyme activity is also present. Thermoinhibition or treatment with abscisic acid suppresses germination and reduces the rates of autolysis of walls isolated from the endosperm by about 25%. Treatments that alleviate thermoinhibition (kinetin and gibberellic acid) increase the rates of autolysis by 20 to 30% when compared to thermoinhibited controls.

Full Text

The Full Text of this article is available as a PDF (657.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  2. Bradford K. J. A water relations analysis of seed germination rates. Plant Physiol. 1990 Oct;94(2):840–849. doi: 10.1104/pp.94.2.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hatfield R. D., Nevins D. J. Hydrolytic Activity and Substrate Specificity of an Endoglucanase from Zea mays Seedling Cell Walls. Plant Physiol. 1987 Jan;83(1):203–207. doi: 10.1104/pp.83.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lee S. H., Kivilaan A., Bandurski R. S. In vitro autolysis of plant cell walls. Plant Physiol. 1967 Jul;42(7):968–972. doi: 10.1104/pp.42.7.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nishitani K., Nevins D. J. Enzymic Analysis of Feruloylated Arabinoxylans (Feraxan) Derived from Zea mays Cell Walls I : Purification of Novel Enzymes Capable of Dissociating Feraxan Fragments from Zea mays Coleoptile Cell Wall. Plant Physiol. 1988 Aug;87(4):883–890. doi: 10.1104/pp.87.4.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sánchez R. A., Sunell L., Labavitch J. M., Bonner B. A. Changes in the Endosperm Cell Walls of Two Datura Species before Radicle Protrusion. Plant Physiol. 1990 May;93(1):89–97. doi: 10.1104/pp.93.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Watkins J. T., Cantliffe D. J. Mechanical Resistance of the Seed Coat and Endosperm during Germination of Capsicum annuum at Low Temperature. Plant Physiol. 1983 May;72(1):146–150. doi: 10.1104/pp.72.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES