Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Feb;104(2):649–655. doi: 10.1104/pp.104.2.649

Iron Transport to Developing Ovules of Pisum sativum (I. Seed Import Characteristics and Phloem Iron-Loading Capacity of Source Regions).

M A Grusak 1
PMCID: PMC159243  PMID: 12232115

Abstract

To understand the processes that control Fe transport to developing seeds, we have characterized seed growth and Fe accretion and have developed a radiotracer technique for quantifying phloem Fe loading in vegetative source regions of Pisum sativum. In hydroponically grown plants of cv Sparkle, developing ovules exhibited a seed-growth period of 22 d, with Fe import occurring throughout the 22-d period. Average Fe content of mature seeds was 19 [mu]g. Source tissues of intact plants were abraded and pulse labeled for 4 h with 100 [mu]M 59Fe(III)-citrate. Fe was successfully phloem loaded and transported to seeds from leaflets, stipules, and pod walls. Total export of 59Fe from labeled source regions was used to calculate tissue-loading rates of 36, 40, and 51 pmol of Fe cm-2 h-1 for the leaflet, stipule, and pod wall surfaces, respectively. By comparison, surface area measurements, along with seed-growth results, allowed us to calculate average theoretical influx values of 42 or 68 pmol of Fe cm-2 h-1 for vegetative tissues at nodes with one or two pods, respectively. Additional studies with the regulatory pea mutant, E107 (a single-gene mutant of cv Sparkle that can overaccumulate Fe), enabled us to increase Fe delivery endogenously to the vegetative tissues. A 36-fold increase in Fe content of E107 leaves, relative to Sparkle, resulted in no increase in Fe content of E107 seeds. Based on these findings, we hypothesized that Fe is phloem loaded in a chelated form, and the expression/synthesis of the endogenous chelator is an important factor in the control of Fe transport to the seeds.

Full Text

The Full Text of this article is available as a PDF (787.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bienfait H. F., van den Briel W., Mesland-Mul N. T. Free space iron pools in roots: generation and mobilization. Plant Physiol. 1985 Jul;78(3):596–600. doi: 10.1104/pp.78.3.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buckhout T. J., Bell P. F., Luster D. G., Chaney R. L. Iron-Stress Induced Redox Activity in Tomato (Lycopersicum esculentum Mill.) Is Localized on the Plasma Membrane. Plant Physiol. 1989 May;90(1):151–156. doi: 10.1104/pp.90.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grusak M. A., Welch R. M., Kochian L. V. Does Iron Deficiency in Pisum sativum Enhance the Activity of the Root Plasmalemma Iron Transport Protein? Plant Physiol. 1990 Nov;94(3):1353–1357. doi: 10.1104/pp.94.3.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Holden M. J., Luster D. G., Chaney R. L., Buckhout T. J., Robinson C. Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots. Plant Physiol. 1991 Oct;97(2):537–544. doi: 10.1104/pp.97.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kneen B. E., Larue T. A., Welch R. M., Weeden N. F. Pleiotropic Effects of brz: A Mutation in Pisum sativum (L.) cv ;Sparkle' Conditioning Decreased Nodulation and Increased Iron Uptake and Leaf Necrosis. Plant Physiol. 1990 Jun;93(2):717–722. doi: 10.1104/pp.93.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laulhère J. P., Labouré A. M., Briat J. F. Photoreduction and incorporation of iron into ferritins. Biochem J. 1990 Jul 1;269(1):79–84. doi: 10.1042/bj2690079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maynard J. W., Lucas W. J. Sucrose and Glucose Uptake into Beta vulgaris Leaf Tissues : A Case for General (Apoplastic) Retrieval Systems. Plant Physiol. 1982 Nov;70(5):1436–1443. doi: 10.1104/pp.70.5.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES