Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Feb;104(2):675–681. doi: 10.1104/pp.104.2.675

Water Relations and Low-Temperature Acclimation for Cactus Species Varying in Freezing Tolerance.

G Goldstein 1, P S Nobel 1
PMCID: PMC159246  PMID: 12232118

Abstract

Opuntia ficus-indica and Opuntia streptacantha are widely cultivated cacti that can tolerate temperatures no lower than -10[deg]C, whereas Opuntia humifusa, which is native to southern Canada and the eastern United States, can tolerate -24[deg]C. As day/night air temperatures were decreased from 30/20 to 10/0[deg]C, the osmotic pressure increased 0.10 MPa for O. ficus-indica and O. streptacantha but 0.38 MPa for O. humifusa. The increases in osmotic pressures were due mostly to the synthesis of fructose, glucose, and sucrose. In addition, O. humifusa produced a substantial amount of mannitol during exposure to low temperatures. Substantial accumulation of sugars and mannitol in cells of O. humifusa may help prevent intracellular freeze dehydration and ice formation as well as provide noncolligative protection to its membranes. Mucilage was slightly higher in all three species at the lower temperatures. Extracellular nucleation of ice occurred closer to the equilibrium freezing temperature for plants at 10/0[deg]C compared with 30/20[deg]C, which could make the cellular dehydration more gradual and, thus, less damaging. Results from nuclear magnetic resonance indicated a restricted mobility of intracellular water at the lower temperatures, especially for O. humifusa, which is consistent with its lower water content and higher levels of low molecular weight solutes.

Full Text

The Full Text of this article is available as a PDF (701.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Goldstein G., Nobel P. S. Changes in Osmotic Pressure and Mucilage during Low-Temperature Acclimation of Opuntia ficus-indica. Plant Physiol. 1991 Nov;97(3):954–961. doi: 10.1104/pp.97.3.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gusta L. V. Determination of unfrozen water in winter cereals at subfreezing temperatures. Plant Physiol. 1975 Nov;56(5):707–709. doi: 10.1104/pp.56.5.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Nobel P. S. Water Relations and Photosynthesis of a Desert CAM Plant, Agave deserti. Plant Physiol. 1976 Oct;58(4):576–582. doi: 10.1104/pp.58.4.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Stout D. G., Steponkus P. L. Nuclear magnetic resonance relaxation times and plasmalemma water exchange in ivy bark. Plant Physiol. 1978 Oct;62(4):636–641. doi: 10.1104/pp.62.4.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Yelenosky G., Guy C. L. Freezing tolerance of citrus, spinach, and petunia leaf tissue : osmotic adjustment and sensitivity to freeze induced cellular dehydration. Plant Physiol. 1989 Feb;89(2):444–451. doi: 10.1104/pp.89.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES