Abstract
Monoclonal antibodies (McAbs) generated against rhamnogalacturonan I (RG-I) purified from suspension-cultured sycamore maple (Acer pseudoplatanus) cells fall into three recognition groups. Four McAbs (group I) recognize an epitope that appears to be immunodominant and is present on RG-I from maize and sycamore maple, pectin and polygalacturonic acid from citrus, gum tragacanth, and membrane glycoproteins from suspension-cultured cells of maize, tobacco, parsley, bean, and sycamore maple. A second set of McAbs (group II) recognizes an epitope present in sycamore maple RG-I but does not bind to any of the other polysaccharides or glycoproteins recognized by group I. Lastly, one McAb, CCRC-M1 (group III), binds to RG-I and more strongly to xyloglucan (XG) from sycamore maple but not to maize RG-I, citrus polygalacturonic acid, or to the plant membrane glycoproteins recognized by group I. The epitope to which CCRC-M1 binds has been examined in detail. Ligand competition assays using a series of oligosaccharides derived from or related to sycamore maple XG demonstrated that a terminal alpha-(1-->2)-linked fucosyl residue constitutes an essential part of the epitope recognized by CCRC-M1. Oligosaccharides containing this structural motif compete with intact sycamore maple XG for binding to the antibody, whereas structurally related oligosaccharides, which do not contain terminal fucosyl residues or in which the terminal fucosyl residue is linked alpha-(1-->3) to the adjacent glycosyl residue, do not compete for the antibody binding site. The ligand binding assays also indicate that CCRC-M1 binds to a conformationally dependent structure of the polysaccharide. Other results of this study establish that some of the carbohydrate epitopes of the plant extracellular matrix are shared among different macromolecules.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. A., Sandrin M. S., Clarke A. E. A high proportion of hybridomas raised to a plant extract secrete antibody to arabinose or galactose. Plant Physiol. 1984 Aug;75(4):1013–1016. doi: 10.1104/pp.75.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOBBITT J. M. Periodate oxidation of carbohydrates. Adv Carbohydr Chem. 1956;48(11):1–41. doi: 10.1016/s0096-5332(08)60115-0. [DOI] [PubMed] [Google Scholar]
- Bauer W. D., Talmadge K. W., Keegstra K., Albersheim P. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells. Plant Physiol. 1973 Jan;51(1):174–187. doi: 10.1104/pp.51.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cisar J., Kabat E. A., Dorner M. M., Liao J. Binding properties of immunoglobulin combining sites specific for terminal or nonterminal antigenic determinants in dextran. J Exp Med. 1975 Aug 1;142(2):435–459. doi: 10.1084/jem.142.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Driouich A., Faye L., Staehelin L. A. The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Trends Biochem Sci. 1993 Jun;18(6):210–214. doi: 10.1016/0968-0004(93)90191-o. [DOI] [PubMed] [Google Scholar]
- FREUND J. The mode of action of immunologic adjuvants. Bibl Tuberc. 1956;(10):130–148. [PubMed] [Google Scholar]
- Glaudemans C. P. Seven structurally different murine monoclonal galactan-specific antibodies show identity in their galactosyl-binding subsite arrangements. Mol Immunol. 1987 Apr;24(4):371–377. doi: 10.1016/0161-5890(87)90179-9. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Wong Y. S., Maclachlan G. Pea Xyloglucan and Cellulose : II. Hydrolysis by Pea Endo-1,4-beta-Glucanases. Plant Physiol. 1984 Jul;75(3):605–610. doi: 10.1104/pp.75.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hisamatsu M., York W. S., Darvill A. G., Albersheim P. Characterization of seven xyloglucan oligosaccharides containing from seventeen to twenty glycosyl residues. Carbohydr Res. 1992 Apr 6;227:45–71. doi: 10.1016/0008-6215(92)85060-d. [DOI] [PubMed] [Google Scholar]
- Ishii T., Thomas J., Darvill A., Albersheim P. Structure of Plant Cell Walls : XXVI. The Walls of Suspension-Cultured Sycamore Cells Contain a Family of Rhamnogalacturonan-I-Like Pectic Polysaccharides. Plant Physiol. 1989 Feb;89(2):421–428. doi: 10.1104/pp.89.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
- Kikuchi S., Ohinata A., Tsumuraya Y., Hashimoto Y., Kaneko Y., Matsushima H. Production and characterization of antibodies to the beta-(1-->6)-galactotetraosyl group and their interaction with arabinogalactan-proteins. Planta. 1993;190(4):525–535. doi: 10.1007/BF00224792. [DOI] [PubMed] [Google Scholar]
- Levy S., York W. S., Stuike-Prill R., Meyer B., Staehelin L. A. Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding. Plant J. 1991 Sep;1(2):195–215. [PubMed] [Google Scholar]
- Liners F., Letesson J. J., Didembourg C., Van Cutsem P. Monoclonal Antibodies against Pectin: Recognition of a Conformation Induced by Calcium. Plant Physiol. 1989 Dec;91(4):1419–1424. doi: 10.1104/pp.91.4.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch M. A., Staehelin L. A. Domain-specific and cell type-specific localization of two types of cell wall matrix polysaccharides in the clover root tip. J Cell Biol. 1992 Jul;118(2):467–479. doi: 10.1083/jcb.118.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeil M., Darvill A. G., Albersheim P. Structure of Plant Cell Walls : XII. Identification of Seven Differently Linked Glycosyl Residues Attached to O-4 of the 2,4-Linked l-Rhamnosyl Residues of Rhamnogalacturonan I. Plant Physiol. 1982 Dec;70(6):1586–1591. doi: 10.1104/pp.70.6.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeil M., Darvill A. G., Albersheim P. Structure of Plant Cell Walls: X. RHAMNOGALACTURONAN I, A STRUCTURALLY COMPLEX PECTIC POLYSACCHARIDE IN THE WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS. Plant Physiol. 1980 Dec;66(6):1128–1134. doi: 10.1104/pp.66.6.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennell R. I., Knox J. P., Scofield G. N., Selvendran R. R., Roberts K. A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants. J Cell Biol. 1989 May;108(5):1967–1977. doi: 10.1083/jcb.108.5.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ragg H., Kuhn D. N., Hahlbrock K. Coordinated regulation of 4-coumarate:CoA ligase and phenylalanine ammonia-lyase mRNAs in cultured plant cells. J Biol Chem. 1981 Oct 10;256(19):10061–10065. [PubMed] [Google Scholar]
- Roberts K. Structures at the plant cell surface. Curr Opin Cell Biol. 1990 Oct;2(5):920–928. doi: 10.1016/0955-0674(90)90093-t. [DOI] [PubMed] [Google Scholar]
- Sone Y., Misaki A., Shibata S. Preparation and characterization of antibodies against 6-O-alpha-D-xylopyranosyl-beta-D-glucopyranose (beta-isoprimeverose), the disaccharide unit of xyloglucan in plant cell-walls. Carbohydr Res. 1989 Aug 1;191(1):79–89. doi: 10.1016/0008-6215(89)85048-7. [DOI] [PubMed] [Google Scholar]
- Woodward M. P., Young W. W., Jr, Bloodgood R. A. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985 Apr 8;78(1):143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]
- York W. S., van Halbeek H., Darvill A. G., Albersheim P. Structural analysis of xyloglucan oligosaccharides by 1H-n.m.r. spectroscopy and fast-atom-bombardment mass spectrometry. Carbohydr Res. 1990 Apr 25;200:9–31. doi: 10.1016/0008-6215(90)84179-x. [DOI] [PubMed] [Google Scholar]
- Zhang G. F., Staehelin L. A. Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol. 1992 Jul;99(3):1070–1083. doi: 10.1104/pp.99.3.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]