Abstract
The small auxin up RNA (SAUR) genes were originally characterized in soybean, where they encode a set of unstable transcripts that are rapidly induced by auxin. In this report, the isolation of a SAUR gene, designated SAUR-AC1, from Arabidopsis thaliana (L.) Heynh. ecotype Columbia is described. The promoter of the SAUR-AC1 gene contains putative regulatory motifs conserved among soybean SAUR promoters, as well as sequences implicated in the regulation of other genes in response to auxin. The transcribed region is approximately 500 bp in length and contains no introns. Highly conserved sequences located within the SAUR-AC1 transcript include the central portion of the coding region and a putative mRNA instability sequence (DST) located in the 3' untranslated region. Accumulation of SAUR-AC1 mRNA is readily induced by natural and synthetic auxins and by the translational inhibitor cycloheximide. Moreover, several auxin- and gravity-response mutants of Arabidopsis exhibit decreased accumulation of the SAUR-AC1 mRNA in elongating etiolated seedlings. In particular, in the axr2-1 mutant the SAUR-AC1 transcript accumulates to less than 5% of wild-type levels. These studies indicate that SAUR-AC1 will be a useful probe of auxin-induced gene expression in Arabidopsis and will facilitate the functional analysis of both transcriptional and posttranscriptional regulatory elements.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- An G., Costa M. A., Ha S. B. Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell. 1990 Mar;2(3):225–233. doi: 10.1105/tpc.2.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullen B. L., Best T. R., Gregg M. M., Barsel S-E, Poff K. L. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1990;93:525–531. doi: 10.1104/pp.93.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conner T. W., Goekjian V. H., LaFayette P. R., Key J. L. Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol. 1990 Oct;15(4):623–632. doi: 10.1007/BF00017836. [DOI] [PubMed] [Google Scholar]
- Estelle M. The plant hormone auxin: insight in sight. Bioessays. 1992 Jul;14(7):439–444. doi: 10.1002/bies.950140703. [DOI] [PubMed] [Google Scholar]
- Franco A. R., Gee M. A., Guilfoyle T. J. Induction and superinduction of auxin-responsive mRNAs with auxin and protein synthesis inhibitors. J Biol Chem. 1990 Sep 15;265(26):15845–15849. [PubMed] [Google Scholar]
- Gee M. A., Hagen G., Guilfoyle T. J. Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs. Plant Cell. 1991 Apr;3(4):419–430. doi: 10.1105/tpc.3.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gielen J., De Beuckeleer M., Seurinck J., Deboeck F., De Greve H., Lemmers M., Van Montagu M., Schell J. The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 1984 Apr;3(4):835–846. doi: 10.1002/j.1460-2075.1984.tb01894.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green P. J. Control of mRNA Stability in Higher Plants. Plant Physiol. 1993 Aug;102(4):1065–1070. doi: 10.1104/pp.102.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilfoyle T. J., Hagen G., Li Y., Gee M. A., Ulmasov T. N., Martin G. Expression of auxin-responsive genes in soybean and transgenic tobacco. Biochem Soc Trans. 1992 Feb;20(1):97–101. doi: 10.1042/bst0200097. [DOI] [PubMed] [Google Scholar]
- Hagen G., Martin G., Li Y., Guilfoyle T. J. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol. 1991 Sep;17(3):567–579. doi: 10.1007/BF00040658. [DOI] [PubMed] [Google Scholar]
- Li Y., Hagen G., Guilfoyle T. J. An Auxin-Responsive Promoter Is Differentially Induced by Auxin Gradients during Tropisms. Plant Cell. 1991 Nov;3(11):1167–1175. doi: 10.1105/tpc.3.11.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClure B. A., Guilfoyle T. Rapid redistribution of auxin-regulated RNAs during gravitropism. Science. 1989 Jan 6;243:91–93. doi: 10.1126/science.11540631. [DOI] [PubMed] [Google Scholar]
- McClure B. A., Hagen G., Brown C. S., Gee M. A., Guilfoyle T. J. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell. 1989 Feb;1(2):229–239. doi: 10.1105/tpc.1.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mogen B. D., MacDonald M. H., Leggewie G., Hunt A. G. Several distinct types of sequence elements are required for efficient mRNA 3' end formation in a pea rbcS gene. Mol Cell Biol. 1992 Dec;12(12):5406–5414. doi: 10.1128/mcb.12.12.5406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickett F. B., Wilson A. K., Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol. 1990 Nov;94(3):1462–1466. doi: 10.1104/pp.94.3.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slightom J. L., Durand-Tardif M., Jouanin L., Tepfer D. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem. 1986 Jan 5;261(1):108–121. [PubMed] [Google Scholar]