Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2004;40(10):303–311. doi: 10.1290/0408056.1

Differentiated cultures of primary hamster tracheal airway epithelial cells

Regina K Rowe 1,2, Steven L Brody 3, Andrew Pekosz 2,4,
PMCID: PMC1592688  NIHMSID: NIHMS2548  PMID: 15780007

Summary

Primary airway epithelial cell cultures can provide a faithful representation of the in vivo airway while allowing for a controlled nutrient source and isolation from other tissues or immune cells. The methods used have significant differences based on tissue source, cell isolation, culture conditions, and assessment of culture purity. We modified and optimized a method for generating tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function. Soon after initial plating, the epithelial cells reached a high transepithelial resistance and formed tight junctions. The cells differentiated into a heterogeneous, multicellular culture containing ciliated, secretory, and basal cells after culture at an air-liquid interface (ALI). The, secretory cell populations initially consisted of MUC5AC-positive goblet cells and MUC5AC/CCSP double-positive cells, but the makeup changed to predominantly Clara cell secretory protein (CCSP)-positive Clara cells after 14 d. The ciliated cell populations differentiated rapidly after ALI as judged by the appearance of β tubulin IV-positive cells. The cultures produced mucus, CCSP, and trypsin-like proteases and were capable of wound repair as judged by increased expression of matrilysin. Our method provides an efficient, high-yield protocol for producing differentiated hamster tracheal epithelial cells that can be used for a variety of in vitro studies including tracheal cell differentiation, airway disease mechanisms, and pathogen-host interactions.

Key words: goblet, Clara, respiratory virus, trachea, influenza, wound repair, ribonucleic acid virus

References

  1. Ali M. J., Teh C. Z., Jennings R., Potter C. W. Transmissibility of influenza viruses in hamsters. Arch. Virol. 1982;72:187–197. doi: 10.1007/BF01348964. [DOI] [PubMed] [Google Scholar]
  2. Bara J., Chastre E., Mahiou J., Singh R. L., Forgue-Lafitte M. E., Hollande E., Godeau F. Gastric m1 mucin, an early oncofetal marker of colon carcinogenesis, is encoded by the MUC5AC gene. Int. J. Cancer. 1998;75:767–773. doi: 10.1002/(SICI)1097-0215(19980302)75:5<767::AID-IJC17>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  3. Boers J. E., Ambergen A. W., Thunnissen F. B. J. M. Number and proliferation of Clara cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 1999;159:1585–1591. doi: 10.1164/ajrccm.159.5.9806044. [DOI] [PubMed] [Google Scholar]
  4. Buchholz U. J., Bukreyev A., Yang L., Lamirande E. W., Murphy B. R., Subbarao K., Collins P. L. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl. Acad. Sci. USA. 2004;101:9804–9809. doi: 10.1073/pnas.0403492101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chua K. B., Bellini W. J., Rota P. A., et al. Nipah virus: a recently emergent deadly paramyxovirus. Science. 2000;288:1432–1435. doi: 10.1126/science.288.5470.1432. [DOI] [PubMed] [Google Scholar]
  6. Collier A. M., Peterson L. P., Baseman J. B. Pathogenesis of infection with Bordetella pertussis in hamster tracheal organ culture. J. Infect. Dis. 1977;136(Suppl.):S196–S203. doi: 10.1093/infdis/136.supplement.s196. [DOI] [PubMed] [Google Scholar]
  7. Denker B. M., Nigam S. K. Molecular structure and assembly of the tight junction. Am. J. Physiol. Renal Physiol. 1998;274:F1–F9. doi: 10.1152/ajprenal.1998.274.1.F1. [DOI] [PubMed] [Google Scholar]
  8. Dunsmore S. E., Saarialho-Kere U. K., Roby J. D., Wilson C. L., Matrisian L. M., Welgus H. G., Parks W. C. Matrilysin expression and function in airway epithelium. J. Clin. Invest. 1998;102:1321–1331. doi: 10.1172/JCI1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher A. F., Tesh R. B., Tonry J., Guzman H., Liu D., Xiao S.-Y. Induction of severe disease in hamsters by two sandfly fever group viruses, Punta Toro and Gabek Forest (phlebovirus, bunyaviridae), similar to that caused by Rift Valley fever virus. Am. J. Trop. Med. Hyg. 2003;69:269–276. [PubMed] [Google Scholar]
  10. Goldman W. E., Baseman J. B. Selective isolation and culture of a proliferating epithelial cell population from the hamster trachea. In Vitro. 1980;16:313–319. doi: 10.1007/BF02618337. [DOI] [PubMed] [Google Scholar]
  11. Goldman W. E., Klapper D. G., Baseman J. B. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect. Immun. 1982;36:782–794. doi: 10.1128/iai.36.2.782-794.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashi T., Ishii A., Nakai S., Hasegawa K. Ultrastructure of goblet-cell metaplasia from Clara cell in the allergic asthmatic airway inflammation in a mouse model of asthma in vivo. Virchows Arch. 2004;444:66–73. doi: 10.1007/s00428-003-0926-8. [DOI] [PubMed] [Google Scholar]
  13. Hermans C., Bernard A. Lung epithelium-specific proteins. Characteristics and potential applications as markers. Am. J. Respir. Crit. Care Med. 1999;159:646–678. doi: 10.1164/ajrccm.159.2.9806064. [DOI] [PubMed] [Google Scholar]
  14. Hooper J. W., Larsen T., Custer D. M., Schmaljohn C. S. A lethal disease model for hantavirus pulmonary syndrome. Virology. 2001;289:6–14. doi: 10.1006/viro.2001.1133. [DOI] [PubMed] [Google Scholar]
  15. Kaartinen L., Nettesheim P., Adler K. B., Randell S. H. Rat tracheal epithelial cell differentiation in vitro. In Vitro Cell. Dev. Biol. 1993;29A:481–492. [PubMed] [Google Scholar]
  16. Kalinichenko V. V., Gusarova G. A., Tan Y., Wang I. C., Major M. L., Wang X., Yoder H. M., Costa R. H. Ubiquitous expression of the forkhead box m1b transgene accelerates proliferation of distinct pulmonary cell types following lung injury. J. Biol. Chem. 2003;278:37888–37894. doi: 10.1074/jbc.M305555200. [DOI] [PubMed] [Google Scholar]
  17. Kalinichenko V. V., Lim L., Shin B., Costa R. H. Differential expression of forkhead box transcription factors following butylated hydroxytoluene lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001;280:L695–L704. doi: 10.1152/ajplung.2001.280.4.L695. [DOI] [PubMed] [Google Scholar]
  18. Karp P. H., Moninger T. O., Weber S. P, Nesselhauf T. S., Launspach J. L., Zabner J., Welsh M. J. An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol. Biol. 2002;188:115–137. doi: 10.1385/1-59259-185-X:115. [DOI] [PubMed] [Google Scholar]
  19. Kelly R. O., Dekker R. A., Bluemink J. G. Ligand-mediated osmium binding: its application in coating biological specimens for SEM. J. Ultrastruct. Res. 1973;45:254–258. doi: 10.1016/S0022-5320(73)80051-6. [DOI] [PubMed] [Google Scholar]
  20. Kido H., Yokogoshi Y., Sakai K., Tashiro M., Kishino Y., Fukutomi A., Katunuma N. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of, the viral fusion glycoprotein. J. Biol. Chem. 1992;267:13573–13579. [PubMed] [Google Scholar]
  21. Kim J. H., Lee S. Y., Bak S. M., et al. Effects of matrix metalloproteinase inhibitor on 1ps-induced goblet cell metaplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004;287:L127–L133. doi: 10.1152/ajplung.00047.2003. [DOI] [PubMed] [Google Scholar]
  22. Ksiazek T. G., Erdman D., Goldsmith C. S., et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
  23. Lee T. C., Wu R., Brody A. R., Barrett J. C., Nettesheim P. Growth and differentiation of hamster tracheal epithelial cells in culture. Exp. Lung Res. 1984;6:27–45. doi: 10.3109/01902148409087893. [DOI] [PubMed] [Google Scholar]
  24. Li Q., Park P. W., Wilson C. L., Parks W. C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell. 2002;111:635–646. doi: 10.1016/S0092-8674(02)01079-6. [DOI] [PubMed] [Google Scholar]
  25. Look D. C., Walter M. J., Williamson M. R., et al. Effects of paramyxoviral infection on airway epithelial cell foxjl expression, ciliogenesis, and mucociliary function. Am. J. Pathol. 2001;159:2055–2069. doi: 10.1016/S0002-9440(10)63057-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lopez N., Padula P., Rossi C., Lazaro M. E., Franze-Fernandez M. T. Genetic identification of a new hamtavirus causing severe pulmonary syndrome in Argentina. Virology. 1996;220:223–226. doi: 10.1006/viro.1996.0305. [DOI] [PubMed] [Google Scholar]
  27. McCown M., Diamond M. S., Pekosz A. The utility of siRNA transcripts produced by RNA polymerase I in down regulating viral gene expression and replication of negative- and positive-strand RNA viruses. Virology. 2003;313:514–524. doi: 10.1016/S0042-6822(03)00341-6. [DOI] [PubMed] [Google Scholar]
  28. McGuire J. K., Li Q., Parks W.C. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am. J. Pathol. 2003;162:1831–1843. doi: 10.1016/S0002-9440(10)64318-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Melby P. C., Chandrasekar B., Zhao W., Coe J. E. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent th1-like cytokine response. J. Immunol. 2001;166:1912–1920. doi: 10.4049/jimmunol.166.3.1912. [DOI] [PubMed] [Google Scholar]
  30. Milazzo M. L., Eyzaguirre E. J., Molina C. P., Fulhorst C. F. Maporal viral infection in the Syrian golden hamster: a model of hantavirus pulmonary syndrome. J. Infect. Dis. 2002;186:1390–1395. doi: 10.1086/344735. [DOI] [PubMed] [Google Scholar]
  31. Moller P. C., Partridge L. R., Cox R., Pellegrini V., Ritchie D. C. An in vitro system for the study of tracheal epithelial cells. Tissue Cell. 1987;19:783–791. doi: 10.1016/0040-8166(87)90019-X. [DOI] [PubMed] [Google Scholar]
  32. Morrey J. D., Day C. W., Julander J. G., Olsen A. L., Sidwell R. W., Cheney C. D., Blatt L. M. Modeling hamsters for evaluating West Nile virus therapies. Antiviral Res. 2004;63:41–50. doi: 10.1016/j.antiviral.2004.02.005. [DOI] [PubMed] [Google Scholar]
  33. Niles R., Kim K. C., Hyman B., Christensen T., Wasano K., Brody J. Characterization of extended primary and secondary cultures of hamster tracheal epithelial cells. In Vitro Cell. Dev. Biol. 1988;24:457–463. doi: 10.1007/BF02628498. [DOI] [PubMed] [Google Scholar]
  34. Nordman H., Davies J. R., Lindell G., de Bolos C., Real F., Carlstedt I. Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochem. J. 2002;364:191–200. doi: 10.1042/bj3640191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Paessler S., Aguilar P., Anishchenko M., Wang H. Q., Aronson J., Campbell G., Cararra A. S., Weaver S. C. The hamster as an animal model for eastern equine encephalitis—and its use in studies of virus entrance into the brain. J. Infect. Dis. 2004;189:2072–2076. doi: 10.1086/383246. [DOI] [PubMed] [Google Scholar]
  36. Parks W. C., Lopez-Boado Y. S., Wilson C. L. Matrilysin in epithelial repair and defense. Chest. 2001;120:36S–41S. doi: 10.1378/chest.120.1_suppl.S36. [DOI] [PubMed] [Google Scholar]
  37. Parks W. C., Wilson C. L., Lopez-Boado Y. S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004;4:617–629. doi: 10.1038/nri1418. [DOI] [PubMed] [Google Scholar]
  38. Paterson R. G., Lamb R. A. The molecular biology of influenza viruses and paramyxoviruses. Molecular virology: a practical approach. Oxford, U.K.: Oxford University Press; 1993. pp. 35–73. [Google Scholar]
  39. Reader J. R., Tepper J. S., Schelegle E. S., Aldrich M. C., Putney L. F., Pfeiffer J. W., Hyde D. M. Pathogenesis of mucous cell metaplasia in a murine asthma model. Am. J. Pathol. 2003;162:2069–2078. doi: 10.1016/S0002-9440(10)64338-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Robinson T. W., Dorio R. J., Kim K. J. Formation of tight monolayers of guinea pig airway epithelial cells cultured in an air-interface: bioelectric properties. Biotechniques. 1993;15:468–473. [PubMed] [Google Scholar]
  41. Shahzeidi S., Aujla P. K., Nickola T. J., Chen Y., Alimam M. Z., Rose M. C. Temporal analysis of goblet cells and mucin gene expression in murine models of allergic asthma. Exp. Lung Res. 2003;29:549–565. doi: 10.1080/01902140390240159. [DOI] [PubMed] [Google Scholar]
  42. Singh G., Katyal S. L. Clara cells and Clara cell 10 kd protein (cc10) Am. J. Respir. Cell Mol. Biol. 1997;17:141–143. doi: 10.1165/ajrcmb.17.2.f138. [DOI] [PubMed] [Google Scholar]
  43. Sinn P. L., Williams G., Vongpunsawad S., Cattaneo R., McCray P. B., Jr. Measles virus preferentially transduces the basolateral surface of well-differentiated human airway epithelia. J. Virol. 2002;76:2403–2409. doi: 10.1128/jvi.76.5.2403-2409.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Steinhauer D. A. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology. 1999;258:1–20. doi: 10.1006/viro.1999.9716. [DOI] [PubMed] [Google Scholar]
  45. Takeda M., Pekosz A., Shuck K., Pinto L. H., Lamb R. A. Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J. Virol. 2002;76:1391–1399. doi: 10.1128/JVI.76.3.1391-1399.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tao T., Skiadopoulos M. H., Durbin A. P., Davoodi F., Collins P. L., Murphy B.R. A live attenuated chimeric recombinant parainfluenza virus (PIV) encoding the internal proteins of PIV type 3 and the surface glycoproteins of PIV type 1 induces complete resistance to PIV1 challenge and partial resistance to PIV3 challenge. Vaccine. 1999;17:1100–1108. doi: 10.1016/S0264-410X(98)00327-2. [DOI] [PubMed] [Google Scholar]
  47. Walters R. W., Freimuth P., Moninger T. O., Ganske I., Zabner J., Welsh M. J. Adenovirus fiber disrupts car-mediated intercellular adhesion allowing virus escape. Cell. 2002;110:789–799. doi: 10.1016/S0092-8674(02)00912-1. [DOI] [PubMed] [Google Scholar]
  48. Whitcutt M. J., Adler K.B., Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell. Dev. Biol. 1988;24:420–428. doi: 10.1007/BF02628493. [DOI] [PubMed] [Google Scholar]
  49. Wielock B., Libert C., Wilson C. Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation? Cytokine Growth Factor Rev. 2004;15:111–115. doi: 10.1016/j.cytogfr.2003.12.001. [DOI] [PubMed] [Google Scholar]
  50. Wong K. T., Grosjean I., Brisson C., et al. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol. 2003;163:2127–2137. doi: 10.1016/S0002-9440(10)63569-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wu R. Growth and differentiation of tracheobronchial epithelial cells. In: Mcdonald J. A., editor. Lung growth and development, vol. 100. New York: Marcel Dekker; 1997. pp. 211–241. [Google Scholar]
  52. Wu R., Nolan E., Turner C. Expression of tracheal differentiated functions in serum-free hormone-supplemented medium. J. Cell. Physiol. 1985;125:167–181. doi: 10.1002/jcp.1041250202. [DOI] [PubMed] [Google Scholar]
  53. Wu R., Smith D. Continuous multiplication of rabbit tracheal epithelial cells in a defined, hormone-supplemented medium. In Vitro. 1982;18:800–812. doi: 10.1007/BF02796504. [DOI] [PubMed] [Google Scholar]
  54. Yamaya M., Finkbeiner W. E., Chun S. Y., Widdicombe J. H. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 1992;262:L713–L724. doi: 10.1152/ajplung.1992.262.6.L713. [DOI] [PubMed] [Google Scholar]
  55. Yamaya M., Hosoda H., Suzuki T., Yamada N., Sasaki H. Human airway epithelial cell culture. In: Wise C., editor. Epithelial cell culture protocols. Totowa, NJ: Humana Press; 2002. pp. 7–16. [DOI] [PubMed] [Google Scholar]
  56. You Y., Richer E. J., Huang T., Brody S. L. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002;283:L1315–L1321. doi: 10.1152/ajplung.00169.2002. [DOI] [PubMed] [Google Scholar]
  57. Zhang L., Peeples M. E., Boucher R. C., Collins P. L., Pickles R. J. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J. Virol. 2002;76:5654–5666. doi: 10.1128/JVI.76.11.5654-5666.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from In Vitro Cellular & Developmental Biology. Animal are provided here courtesy of Nature Publishing Group

RESOURCES