Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Apr;104(4):1119–1129. doi: 10.1104/pp.104.4.1119

Separate photosensory pathways co-regulate blue light/ultraviolet-A-activated psbD-psbC transcription and light-induced D2 and CP43 degradation in barley (Hordeum vulgare) chloroplasts.

D A Christopher 1, J E Mullet 1
PMCID: PMC159272  PMID: 8016258

Abstract

We studied the effects of spectral quality and fluence on the expression of several chloroplast-encoded photosynthesis genes and on the stability of their protein products in barley (Hordeum vulgare). During light-dependent chloroplast maturation, mRNA levels for psbD-psbC and psbA were maintained at higher levels compared with mRNAs encoding proteins for other photosynthesis functions (atpB, rbcL). Maintenance of psbD-psbC mRNA levels was accounted for by differential activation of the psbD-psbC light-responsive promoter by high-irradiance blue light and, secondarily, ultraviolet A (UV-A) radiation. Promoter activation was fluence dependent and required continuous illumination for 2 h at threshold fluences of 1.3 (blue light), 7.5 (white light), or 10 (UV-A) mumol m-2 s-1. From immunoblot analysis experiments, we showed that the psbD-psbC gene products D2 and CP43 undergo light-mediated turnover similar to light-labile D1. Other photosynthesis proteins such as the beta subunit of ATP synthase and the large subunit of ribulose-1,5-bisphosphate carboxylase were relatively stable. In the absence of protein synthesis, D2 degradation paralleled the degradation of D1 (relative half-lives, 9.5-10 h). CP43 decay was about half of D2 and D1 decay. In contrast with activation of the light-responsive promoter, the fluence-dependent degradation of D1, D2, and CP43 required 50- to 100-fold higher fluences of photosynthetically active white, red, blue, or UV-A irradiation. We interpret the different fluence and wavelength requirements to indicate that separate photosensory systems regulate activation of psbD-psbC transcription and turnover of D1, D2, and CP43. We propose that a blue light/UV-A photosensory pathway activates the psbD-psbC light-responsive promoter, differentially maintaining the capacity of mature chloroplasts to synthesize D2 and CP43, which are damaged and turned over in illuminated plants.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Droillard M. J., Bate N. J., Rothstein S. J., Thompson J. E. Active Translation of the D-1 Protein of Photosystem II in Senescing Leaves. Plant Physiol. 1992 Jun;99(2):589–594. doi: 10.1104/pp.99.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Feierabend J., Schaan C., Hertwig B. Photoinactivation of Catalase Occurs under Both High- and Low-Temperature Stress Conditions and Accompanies Photoinhibition of Photosystem II. Plant Physiol. 1992 Nov;100(3):1554–1561. doi: 10.1104/pp.100.3.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fluhr R., Chua N. H. Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia plants: Phytochrome response and blue-light induction. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2358–2362. doi: 10.1073/pnas.83.8.2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gamble P. E., Mullet J. E. Translation and stability of proteins encoded by the plastid psbA and psbB genes are regulated by a nuclear gene during light-induced chloroplast development in barley. J Biol Chem. 1989 May 5;264(13):7236–7243. [PubMed] [Google Scholar]
  5. Greenberg B. M., Gaba V., Canaani O., Malkin S., Mattoo A. K., Edelman M. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6617–6620. doi: 10.1073/pnas.86.17.6617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaufman L. S. Transduction of Blue-Light Signals. Plant Physiol. 1993 Jun;102(2):333–337. doi: 10.1104/pp.102.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klein R. R., Gamble P. E., Mullet J. E. Light-Dependent Accumulation of Radiolabeled Plastid-Encoded Chlorophyll a-Apoproteins Requires Chlorophyll a: I. Analysis of Chlorophyll-Deficient Mutants and Phytochrome Involvement. Plant Physiol. 1988 Dec;88(4):1246–1256. doi: 10.1104/pp.88.4.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klein R. R., Mullet J. E. Control of gene expression during higher plant chloroplast biogenesis. Protein synthesis and transcript levels of psbA, psaA-psaB, and rbcL in dark-grown and illuminated barley seedlings. J Biol Chem. 1987 Mar 25;262(9):4341–4348. [PubMed] [Google Scholar]
  9. Liscum E., Hangarter R. P. Arabidopsis Mutants Lacking Blue Light-Dependent Inhibition of Hypocotyl Elongation. Plant Cell. 1991 Jul;3(7):685–694. doi: 10.1105/tpc.3.7.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marrs K. A., Kaufman L. S. Blue-light regulation of transcription for nuclear genes in pea. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4492–4495. doi: 10.1073/pnas.86.12.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mattoo A. K., Hoffman-Falk H., Marder J. B., Edelman M. Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1380–1384. doi: 10.1073/pnas.81.5.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mattoo A. K., Marder J. B., Edelman M. Dynamics of the photosystem II reaction center. Cell. 1989 Jan 27;56(2):241–246. doi: 10.1016/0092-8674(89)90897-0. [DOI] [PubMed] [Google Scholar]
  13. Mullet J. E., Klein R. R., Grossman A. R. Optimization of protein synthesis in isolated higher plant chloroplasts. Identification of paused translation intermediates. Eur J Biochem. 1986 Mar 3;155(2):331–338. doi: 10.1111/j.1432-1033.1986.tb09495.x. [DOI] [PubMed] [Google Scholar]
  14. Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
  15. Rapp J. C., Baumgartner B. J., Mullet J. Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem. 1992 Oct 25;267(30):21404–21411. [PubMed] [Google Scholar]
  16. Schuster G., Timberg R., Ohad I. Turnover of thylakoid photosystem II proteins during photoinhibition of Chlamydomonas reinhardtii. Eur J Biochem. 1988 Nov 1;177(2):403–410. doi: 10.1111/j.1432-1033.1988.tb14389.x. [DOI] [PubMed] [Google Scholar]
  17. Sexton T. B., Christopher D. A., Mullet J. E. Light-induced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J. 1990 Dec;9(13):4485–4494. doi: 10.1002/j.1460-2075.1990.tb07899.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Warpeha K. M., Hamm H. E., Rasenick M. M., Kaufman L. S. A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8925–8929. doi: 10.1073/pnas.88.20.8925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhu Y. S., Merkle-Lehman D. L., Kung S. D. Light-induced transformation of amyloplasts into chloroplasts in potato tubers. Plant Physiol. 1984 May;75(1):142–145. doi: 10.1104/pp.75.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES