Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Apr;104(4):1167–1176. doi: 10.1104/pp.104.4.1167

Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

S P Slocombe 1, P Piffanelli 1, D Fairbairn 1, S Bowra 1, P Hatzopoulos 1, M Tsiantis 1, D J Murphy 1
PMCID: PMC159277  PMID: 8016261

Abstract

The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abián J., Gelpí E., Pagès M. Effect of abscisic Acid on the linoleic Acid metabolism in developing maize embryos. Plant Physiol. 1991 Apr;95(4):1277–1283. doi: 10.1104/pp.95.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baerson S. R., Lamppa G. K. Developmental regulation of an acyl carrier protein gene promoter in vegetative and reproductive tissues. Plant Mol Biol. 1993 May;22(2):255–267. doi: 10.1007/BF00014933. [DOI] [PubMed] [Google Scholar]
  3. Benfey P. N., Chua N. H. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants. Science. 1990 Nov 16;250(4983):959–966. doi: 10.1126/science.250.4983.959. [DOI] [PubMed] [Google Scholar]
  4. Bensi G., Raugei G., Klefenz H., Cortese R. Structure and expression of the human haptoglobin locus. EMBO J. 1985 Jan;4(1):119–126. doi: 10.1002/j.1460-2075.1985.tb02325.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Cummins I., Hills M. J., Ross J. H., Hobbs D. H., Watson M. D., Murphy D. J. Differential, temporal and spatial expression of genes involved in storage oil and oleosin accumulation in developing rapeseed embryos: implications for the role of oleosins and the mechanisms of oil-body formation. Plant Mol Biol. 1993 Dec;23(5):1015–1027. doi: 10.1007/BF00021816. [DOI] [PubMed] [Google Scholar]
  7. Delisle A. J., Crouch M. L. Seed Storage Protein Transcription and mRNA Levels in Brassica napus during Development and in Response to Exogenous Abscisic Acid. Plant Physiol. 1989 Oct;91(2):617–623. doi: 10.1104/pp.91.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Domoney C., Casey R. Measurement of gene number for seed storage proteins in Pisum. Nucleic Acids Res. 1985 Feb 11;13(3):687–699. doi: 10.1093/nar/13.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knutzon D. S., Thompson G. A., Radke S. E., Johnson W. B., Knauf V. C., Kridl J. C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2624–2628. doi: 10.1073/pnas.89.7.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murphy G., Kavanagh T. Speeding-up the sequencing of double-stranded DNA. Nucleic Acids Res. 1988 Jun 10;16(11):5198–5198. doi: 10.1093/nar/16.11.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nishida I., Beppu T., Matsuo T., Murata N. Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl-(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea. Plant Mol Biol. 1992 Jul;19(4):711–713. doi: 10.1007/BF00026799. [DOI] [PubMed] [Google Scholar]
  14. Ohlrogge J. B., Browse J., Somerville C. R. The genetics of plant lipids. Biochim Biophys Acta. 1991 Feb 26;1082(1):1–26. doi: 10.1016/0005-2760(91)90294-r. [DOI] [PubMed] [Google Scholar]
  15. Petterson M., Schaffner W. A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev. 1987 Nov;1(9):962–972. doi: 10.1101/gad.1.9.962. [DOI] [PubMed] [Google Scholar]
  16. Ryan A. J., Royal C. L., Hutchinson J., Shaw C. H. Genomic sequence of a 12S seed storage protein from oilseed rape (Brassica napus c.v. jet neuf). Nucleic Acids Res. 1989 May 11;17(9):3584–3584. doi: 10.1093/nar/17.9.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Safford R., Windust J. H., Lucas C., De Silva J., James C. M., Hellyer A., Smith C. G., Slabas A. R., Hughes S. G. Plastid-localised seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family. Eur J Biochem. 1988 Jun 1;174(2):287–295. doi: 10.1111/j.1432-1033.1988.tb14096.x. [DOI] [PubMed] [Google Scholar]
  18. Sato A., Becker C. K., Knauf V. C. Nucleotide Sequence of a Complementary DNA Clone Encoding Stearoyl-Acyl Carrier Protein Desaturase from Simmondsia chinensis. Plant Physiol. 1992 May;99(1):362–363. doi: 10.1104/pp.99.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schussler J. R., Brenner M. L., Brun W. A. Abscisic Acid and its relationship to seed filling in soybeans. Plant Physiol. 1984 Oct;76(2):301–306. doi: 10.1104/pp.76.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shanklin J., Somerville C. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2510–2514. doi: 10.1073/pnas.88.6.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Slocombe S. P., Cummins I., Jarvis R. P., Murphy D. J. Nucleotide sequence and temporal regulation of a seed-specific Brassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Mol Biol. 1992 Oct;20(1):151–155. doi: 10.1007/BF00029157. [DOI] [PubMed] [Google Scholar]
  22. Taylor M. A., Smith S. B., Davies H. V., Burch L. R. The Primary Structure of a cDNA Clone of the Stearoyl-Acyl Carrier Protein Desaturase Gene from Potato (Solanum tuberosum L.). Plant Physiol. 1992 Sep;100(1):533–534. doi: 10.1104/pp.100.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thompson G. A., Scherer D. E., Foxall-Van Aken S., Kenny J. W., Young H. L., Shintani D. K., Kridl J. C., Knauf V. C. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2578–2582. doi: 10.1073/pnas.88.6.2578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Twell D., Yamaguchi J., Wing R. A., Ushiba J., McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 1991 Mar;5(3):496–507. doi: 10.1101/gad.5.3.496. [DOI] [PubMed] [Google Scholar]
  25. Weselake R. J., Pomeroy M. K., Furukawa T. L., Golden J. L., Little D. B., Laroche A. Developmental Profile of Diacylglycerol Acyltransferase in Maturing Seeds of Oilseed Rape and Safflower and Microspore-Derived Cultures of Oilseed Rape. Plant Physiol. 1993 Jun;102(2):565–571. doi: 10.1104/pp.102.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williams M. E., Foster R., Chua N. H. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell. 1992 Apr;4(4):485–496. doi: 10.1105/tpc.4.4.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamaguchi-Shinozaki K., Mino M., Mundy J., Chua N. H. Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol. 1990 Dec;15(6):905–912. doi: 10.1007/BF00039429. [DOI] [PubMed] [Google Scholar]
  28. de Silva J., Robinson S. J., Safford R. The isolation and functional characterisation of a B. napus acyl carrier protein 5' flanking region involved in the regulation of seed storage lipid synthesis. Plant Mol Biol. 1992 Apr;18(6):1163–1172. doi: 10.1007/BF00047719. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES