Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Apr;104(4):1259–1267. doi: 10.1104/pp.104.4.1259

In Vitro Analysis of Light-Induced Transcription in the Wheat psbD/C Gene Cluster Using Plastid Extracts from Dark-Grown and Short-Term-Illuminated Seedlings.

T Wada 1, Y Tunoyama 1, T Shiina 1, Y Toyoshima 1
PMCID: PMC159289  PMID: 12232165

Abstract

We describe a plastid in vitro transcription system that reflects characteristic features of the light-regulated transcription observed in vivo. Multiple transcripts of the wheat (Triticum aestivum) psbD/C gene cluster comprise six distinct 5[prime] ends including four transcription initiation sites designated as D/C-1 through D/C-4. Transcripts from one particular site, D/C-3, were found to be conspicuously enhanced in abundance after 4 h of illumination in vivo. The plastid extract prepared from 5-d-old dark-grown wheat seedlings was capable of transcribing from the D/C-2 and D/C-4 sites in vitro but had almost no transcription activity from the light-responsive D/C-3 site (the D/C-1 site was not examined). The plastid extract from 4-h-illuminated seedlings initiated transcription from the light-responsive site (D/C-3). Transcription from the D/C-2 and D/C-4 sites was not enhanced by using the extract from 4-h-illuminated seedlings, indicative of specific activation of the light-responsive promoter on the D/C-3 site by the extract from 4-h-illuminated seedlings. The plastid extract from 4-h-illuminated seedlings was divided into two fractions on a heparin-Sepharose column, into which the light-induced component(s) responsible for activation of the D/C-3 promoter and RNA polymerase were separated. The fraction containing the component(s) activating the D/C-3 promoter induced the transcription activity from the D/C-3 site in the plastid extract from dark-grown seedlings. It is concluded that the plastid extract from 4-h-illuminated seedlings contains some light-regulatory component(s) that activate specifically the light-responsive promoter.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baeza L., Bertrand A., Mache R., Lerbs-Mache S. Characterization of a protein binding sequence in the promoter region of the 16S rRNA gene of the spinach chloroplast genome. Nucleic Acids Res. 1991 Jul 11;19(13):3577–3581. doi: 10.1093/nar/19.13.3577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berends Sexton T., Jones J. T., Mullet J. E. Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU). Curr Genet. 1990 May;17(5):445–454. doi: 10.1007/BF00334526. [DOI] [PubMed] [Google Scholar]
  3. Bradley D., Gatenby A. A. Mutational analysis of the maize chloroplast ATPase-beta subunit gene promoter: the isolation of promoter mutants in E. coli and their characterization in a chloroplast in vitro transcription system. EMBO J. 1985 Dec 30;4(13B):3641–3648. doi: 10.1002/j.1460-2075.1985.tb04129.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christopher D. A., Kim M., Mullet J. E. A novel light-regulated promoter is conserved in cereal and dicot chloroplasts. Plant Cell. 1992 Jul;4(7):785–798. doi: 10.1105/tpc.4.7.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deng X. W., Matsui M., Wei N., Wagner D., Chu A. M., Feldmann K. A., Quail P. H. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell. 1992 Nov 27;71(5):791–801. doi: 10.1016/0092-8674(92)90555-q. [DOI] [PubMed] [Google Scholar]
  6. Eisermann A., Tiller K., Link G. In vitro transcription and DNA binding characteristics of chloroplast and etioplast extracts from mustard (Sinapis alba) indicate differential usage of the psbA promoter. EMBO J. 1990 Dec;9(12):3981–3987. doi: 10.1002/j.1460-2075.1990.tb07619.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gamble P. E., Sexton T. B., Mullet J. E. Light-dependent changes in psbD and psbC transcripts of barley chloroplasts: accumulation of two transcripts maintains psbD and psbC translation capability in mature chloroplasts. EMBO J. 1988 May;7(5):1289–1297. doi: 10.1002/j.1460-2075.1988.tb02943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilmartin P. M., Sarokin L., Memelink J., Chua N. H. Molecular light switches for plant genes. Plant Cell. 1990 May;2(5):369–378. doi: 10.1105/tpc.2.5.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gruissem W. Chloroplast gene expression: how plants turn their plastids on. Cell. 1989 Jan 27;56(2):161–170. doi: 10.1016/0092-8674(89)90889-1. [DOI] [PubMed] [Google Scholar]
  10. Gruissem W., Zurawski G. Identification and mutational analysis of the promoter for a spinach chloroplast transfer RNA gene. EMBO J. 1985 Jul;4(7):1637–1644. doi: 10.1002/j.1460-2075.1985.tb03831.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
  12. Howe C. J., Barker R. F., Bowman C. M., Dyer T. A. Common features of three inversions in wheat chloroplast DNA. Curr Genet. 1988 Apr;13(4):343–349. doi: 10.1007/BF00424430. [DOI] [PubMed] [Google Scholar]
  13. Khanna N. C., Lakhani S., Tewari K. K. Identification of the template binding polypeptide in the pea chloroplast transcriptional complex. Nucleic Acids Res. 1992 Jan 11;20(1):69–74. doi: 10.1093/nar/20.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klein R. R., Mullet J. E. Control of gene expression during higher plant chloroplast biogenesis. Protein synthesis and transcript levels of psbA, psaA-psaB, and rbcL in dark-grown and illuminated barley seedlings. J Biol Chem. 1987 Mar 25;262(9):4341–4348. [PubMed] [Google Scholar]
  15. Klein R. R., Mullet J. E. Light-induced transcription of chloroplast genes. psbA transcription is differentially enhanced in illuminated barley. J Biol Chem. 1990 Feb 5;265(4):1895–1902. [PubMed] [Google Scholar]
  16. Klein R. R. Regulation of light-induced chloroplast transcription and translation in eight-day-old dark-grown barley seedlings. Plant Physiol. 1991 Sep;97(1):335–342. doi: 10.1104/pp.97.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Link G. DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro system from mustard (Sinapis alba L.). EMBO J. 1984 Aug;3(8):1697–1704. doi: 10.1002/j.1460-2075.1984.tb02034.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orozco E. M., Jr, Mullet J. E., Chua N. H. An in vitro system for accurate transcription initiation of chloroplast protein genes. Nucleic Acids Res. 1985 Feb 25;13(4):1283–1302. doi: 10.1093/nar/13.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reiss T., Link G. Characterization of transcriptionally active DNA-protein complexes from chloroplasts and etioplasts of mustard (Sinapis alba L.). Eur J Biochem. 1985 Apr 15;148(2):207–212. doi: 10.1111/j.1432-1033.1985.tb08826.x. [DOI] [PubMed] [Google Scholar]
  20. Rodermel S. R., Bogorad L. Maize plastid photogenes: mapping and photoregulation of transcript levels during light-induced development. J Cell Biol. 1985 Feb;100(2):463–476. doi: 10.1083/jcb.100.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sexton T. B., Christopher D. A., Mullet J. E. Light-induced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J. 1990 Dec;9(13):4485–4494. doi: 10.1002/j.1460-2075.1990.tb07899.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tiller K., Eisermann A., Link G. The chloroplast transcription apparatus from mustard (Sinapis alba L.). Evidence for three different transcription factors which resemble bacterial sigma factors. Eur J Biochem. 1991 May 23;198(1):93–99. doi: 10.1111/j.1432-1033.1991.tb15990.x. [DOI] [PubMed] [Google Scholar]
  23. Tiller K., Link G. Sigma-like transcription factors from mustard (Sinapis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. Plant Mol Biol. 1993 Feb;21(3):503–513. doi: 10.1007/BF00028807. [DOI] [PubMed] [Google Scholar]
  24. Zaitlin D., Hu J., Bogorad L. Binding and transcription of relaxed DNA templates by fractions of maize chloroplast extracts. Proc Natl Acad Sci U S A. 1989 Feb;86(3):876–880. doi: 10.1073/pnas.86.3.876. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES