Abstract
Carrot (Daucus carota), like most other plants, contains various isoenzymes of acid beta-fructofuranosidase (beta F) (invertase), which either accumulate as soluble polypeptides in the vacuole (isoenzymes I and II) or are ionically bound to the cell wall (extracellular beta F). Using antibodies against isoenzyme I of carrot soluble beta F, we isolated several cDNA clones encoding polypeptides with sequences characteristic of beta Fs, from bacteria, yeast, and plants. The cDNA-derived polypeptide of one of the clones contains all partial peptide sequences of the purified isoenzyme I and thus codes for soluble acid beta F isoenzyme I. A second clone codes for a related polypeptide (63% identity and 77% similarity) with characteristics of isoenzyme II. These two soluble beta Fs, have acidic isoelectric points (3.8 and 5.7, respectively) clearly different from the extracellular enzyme, which has a basic isoelectric point of 9.9. Marked differences among the three nucleotide sequences as well as different hybridization patterns on genomic DNA gel blots prove that these three isoenzymes of carrot acid beta F are encoded by different genes and do not originate from differential splicing of a common gene, as is the case in the yeast Saccharomyces cerevisiae. All three carrot acid beta Fs, are preproenzymes with signal peptides and N-terminal propeptides. A comparison of the sequences of the soluble enzymes with the sequence of the extracellular protein identified C-terminal extensions with short hydrophobic amino acid stretches that may contain the information for vacuolar targeting.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bednarek S. Y., Raikhel N. V. Intracellular trafficking of secretory proteins. Plant Mol Biol. 1992 Oct;20(1):133–150. doi: 10.1007/BF00029156. [DOI] [PubMed] [Google Scholar]
- Bednarek S. Y., Raikhel N. V. The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell. 1991 Nov;3(11):1195–1206. doi: 10.1105/tpc.3.11.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson M., Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. doi: 10.1016/0092-8674(82)90384-1. [DOI] [PubMed] [Google Scholar]
- Elliott K. J., Butler W. O., Dickinson C. D., Konno Y., Vedvick T. S., Fitzmaurice L., Mirkov T. E. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol. 1993 Feb;21(3):515–524. doi: 10.1007/BF00028808. [DOI] [PubMed] [Google Scholar]
- Hedley P. E., Machray G. C., Davies H. V., Burch L., Waugh R. cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Biol. 1993 Aug;22(5):917–922. doi: 10.1007/BF00027378. [DOI] [PubMed] [Google Scholar]
- Klann E., Yelle S., Bennett A. B. Tomato fruit Acid invertase complementary DNA : nucleotide and deduced amino Acid sequences. Plant Physiol. 1992 May;99(1):351–353. doi: 10.1104/pp.99.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurière C., Laurière M., Sturm A., Faye L., Chrispeels M. J. Characterization of beta-fructosidase, an extracellular glycoprotein of carrot cells. Biochimie. 1988 Nov;70(11):1483–1491. doi: 10.1016/0300-9084(88)90285-4. [DOI] [PubMed] [Google Scholar]
- Matsushita K., Uritani I. Change in invertase activity of sweet potato in response to wounding and purification and properties of its invertases. Plant Physiol. 1974 Jul;54(1):60–66. doi: 10.1104/pp.54.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramloch-Lorenz K., Knudsen S., Sturm A. Molecular characterization of the gene for carrot cell wall beta-fructosidase. Plant J. 1993 Sep;4(3):545–554. doi: 10.1046/j.1365-313x.1993.04030545.x. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Sturm A., Chrispeels M. J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. 1990 Nov;2(11):1107–1119. doi: 10.1105/tpc.2.11.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sung Z. R. Turbidimetric measurement of plant cell culture growth. Plant Physiol. 1976 Mar;57(3):460–462. doi: 10.1104/pp.57.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unger C., Hofsteenge J., Sturm A. Purification and characterization of a soluble beta-fructofuranosidase from Daucus carota. Eur J Biochem. 1992 Mar 1;204(2):915–921. doi: 10.1111/j.1432-1033.1992.tb16712.x. [DOI] [PubMed] [Google Scholar]
- Winther J. R., Sørensen P. Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9330–9334. doi: 10.1073/pnas.88.20.9330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu L. L., Song I., Karuppiah N., Kaufman P. B. Kinetic induction of oat shoot pulvinus invertase mRNA by gravistimulation and partial cDNA cloning by the polymerase chain reaction. Plant Mol Biol. 1993 Mar;21(6):1175–1179. doi: 10.1007/BF00023613. [DOI] [PubMed] [Google Scholar]
- Wyse R. E., Zamski E., Tomos A. D. Turgor regulation of sucrose transport in sugar beet taproot tissue. Plant Physiol. 1986 Jun;81(2):478–481. doi: 10.1104/pp.81.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yelle S., Chetelat R. T., Dorais M., Deverna J. W., Bennett A. B. Sink Metabolism in Tomato Fruit : IV. Genetic and Biochemical Analysis of Sucrose Accumulation. Plant Physiol. 1991 Apr;95(4):1026–1035. doi: 10.1104/pp.95.4.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young R. A., Davis R. W. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. doi: 10.1126/science.6356359. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]