Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Apr;104(4):1359–1370. doi: 10.1104/pp.104.4.1359

Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation.

J V Anderson 1, Q B Li 1, D W Haskell 1, C L Guy 1
PMCID: PMC159301  PMID: 8016266

Abstract

The 70-kD heat-shock proteins (HSP70s) are encoded by a multigene family in eukaryotes. In plants, the 70-kD heat-shock cognate (HSC70) proteins are located in organellar and cytosolic compartments of cells in most tissues. Previous work has indicated that HSC70 proteins of spinach (Spinacia oleracea) are actively synthesized during cold-acclimating conditions. We have isolated, sequenced, and characterized cDNA and genomic clones for the endoplasmic reticulum (ER) luminal HSC70 protein (immunoglobulin heavy chain-binding protein; BiP) of spinach. The spinach ER-luminal HSC70 is a constitutively expressed gene consisting of eight exons. Spinach BiP mRNA appears to be up-regulated during cold acclimation but is not expressed during water stress or heat shock. In contrast to the differential regulation of mRNA, the ER-luminal HSC70 protein levels remain constant in response to various environmental stresses. Two other members of the spinach 70-kD heat-shock (HS70) multigene family also show differential expression in response to a variety of environmental stresses. A constitutively expressed cytosolic HSC70 protein in spinach appears also to be up-regulated in response to both cold-acclimating and heat-shock treatments. Spinach also contains a cold-shock-induced HS70 gene that is not expressed during heat shock or water stress. Since HSP70s are considered to be involved with the chaperoning and folding of proteins, the data further support the concept that they may be important for maintaining cellular homeostasis and proper protein biogenesis during cold acclimation of spinach.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. V., Haskell D. W., Guy C. L. Differential influence of ATP on native spinach 70-kilodalton heat-shock cognates. Plant Physiol. 1994 Apr;104(4):1371–1380. doi: 10.1104/pp.104.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bork P., Sander C., Valencia A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7290–7294. doi: 10.1073/pnas.89.16.7290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brodl M. R., Belanger F. C., Ho T. H. Heat shock proteins are not required for the degradation of alpha-amylase mRNA and the delamellation of endoplasmic reticulum in heat-stressed barley aleurone cells. Plant Physiol. 1990 Apr;92(4):1133–1141. doi: 10.1104/pp.92.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlino A., Toledo H., Skaleris D., DeLisio R., Weissbach H., Brot N. Interactions of liver Grp78 and Escherichia coli recombinant Grp78 with ATP: multiple species and disaggregation. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2081–2085. doi: 10.1073/pnas.89.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark B. D., Brown I. R. A retinal heat shock protein is associated with elements of the cytoskeleton and binds to calmodulin. Biochem Biophys Res Commun. 1986 Sep 30;139(3):974–981. doi: 10.1016/s0006-291x(86)80273-x. [DOI] [PubMed] [Google Scholar]
  6. Craig E. A. Essential roles of 70kDa heat inducible proteins. Bioessays. 1989 Aug-Sep;11(2-3):48–52. doi: 10.1002/bies.950110203. [DOI] [PubMed] [Google Scholar]
  7. Craig E. A., Gross C. A. Is hsp70 the cellular thermometer? Trends Biochem Sci. 1991 Apr;16(4):135–140. doi: 10.1016/0968-0004(91)90055-z. [DOI] [PubMed] [Google Scholar]
  8. Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flynn G. C., Chappell T. G., Rothman J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989 Jul 28;245(4916):385–390. doi: 10.1126/science.2756425. [DOI] [PubMed] [Google Scholar]
  10. Fontes E. B., Shank B. B., Wrobel R. L., Moose S. P., OBrian G. R., Wurtzel E. T., Boston R. S. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell. 1991 May;3(5):483–496. doi: 10.1105/tpc.3.5.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  12. Heschl M. F., Baillie D. L. Characterization of the hsp70 multigene family of Caenorhabditis elegans. DNA. 1989 May;8(4):233–243. doi: 10.1089/dna.1.1989.8.233. [DOI] [PubMed] [Google Scholar]
  13. Ko K., Bornemisza O., Kourtz L., Ko Z. W., Plaxton W. C., Cashmore A. R. Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. J Biol Chem. 1992 Feb 15;267(5):2986–2993. [PubMed] [Google Scholar]
  14. Kohno K., Normington K., Sambrook J., Gething M. J., Mori K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol. 1993 Feb;13(2):877–890. doi: 10.1128/mcb.13.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  16. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  17. La Teana A., Brandi A., Falconi M., Spurio R., Pon C. L., Gualerzi C. O. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10907–10911. doi: 10.1073/pnas.88.23.10907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin X. Y., Chern M. S., Zimmerman J. L. Cloning and characterization of a carrot hsp70 gene. Plant Mol Biol. 1991 Dec;17(6):1245–1249. doi: 10.1007/BF00028740. [DOI] [PubMed] [Google Scholar]
  19. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  20. Marshall J. S., Keegstra K. Isolation and characterization of a cDNA clone encoding the major hsp70 of the pea chloroplastic stroma. Plant Physiol. 1992 Oct;100(2):1048–1054. doi: 10.1104/pp.100.2.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCarty J. S., Walker G. C. DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9513–9517. doi: 10.1073/pnas.88.21.9513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miernyk J. A., Duck N. B., Shatters R. G., Jr, Folk W. R. The 70-Kilodalton Heat Shock Cognate Can Act as a Molecular Chaperone during the Membrane Translocation of a Plant Secretory Protein Precursor. Plant Cell. 1992 Jul;4(7):821–829. doi: 10.1105/tpc.4.7.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Milarski K. L., Morimoto R. I. Mutational analysis of the human HSP70 protein: distinct domains for nucleolar localization and adenosine triphosphate binding. J Cell Biol. 1989 Nov;109(5):1947–1962. doi: 10.1083/jcb.109.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Munro S., Pelham H. R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986 Jul 18;46(2):291–300. doi: 10.1016/0092-8674(86)90746-4. [DOI] [PubMed] [Google Scholar]
  25. Neumann D., Nover L., Parthier B., Rieger R., Scharf K. D., Wollgiehn R., zur Nieden U. Heat shock and other stress response systems of plants. Results Probl Cell Differ. 1989;16:1–155. [PubMed] [Google Scholar]
  26. Neven L. G., Haskell D. W., Hofig A., Li Q. B., Guy C. L. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol. 1993 Jan;21(2):291–305. doi: 10.1007/BF00019945. [DOI] [PubMed] [Google Scholar]
  27. Normington K., Kohno K., Kozutsumi Y., Gething M. J., Sambrook J. S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell. 1989 Jun 30;57(7):1223–1236. doi: 10.1016/0092-8674(89)90059-7. [DOI] [PubMed] [Google Scholar]
  28. Pelham H. R., Hardwick K. G., Lewis M. J. Sorting of soluble ER proteins in yeast. EMBO J. 1988 Jun;7(6):1757–1762. doi: 10.1002/j.1460-2075.1988.tb03005.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pelham H. R. Heat shock and the sorting of luminal ER proteins. EMBO J. 1989 Nov;8(11):3171–3176. doi: 10.1002/j.1460-2075.1989.tb08475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pelham H. R. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell. 1986 Sep 26;46(7):959–961. doi: 10.1016/0092-8674(86)90693-8. [DOI] [PubMed] [Google Scholar]
  31. Pidoux A. L., Armstrong J. Analysis of the BiP gene and identification of an ER retention signal in Schizosaccharomyces pombe. EMBO J. 1992 Apr;11(4):1583–1591. doi: 10.1002/j.1460-2075.1992.tb05203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Qoronfleh M. W., Debouck C., Keller J. Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. J Bacteriol. 1992 Dec;174(24):7902–7909. doi: 10.1128/jb.174.24.7902-7909.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roberts J. K., Key J. L. Isolation and characterization of a soybean hsp70 gene. Plant Mol Biol. 1991 Apr;16(4):671–683. doi: 10.1007/BF00023431. [DOI] [PubMed] [Google Scholar]
  34. Rose M. D., Misra L. M., Vogel J. P. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell. 1989 Jun 30;57(7):1211–1221. doi: 10.1016/0092-8674(89)90058-5. [DOI] [PubMed] [Google Scholar]
  35. Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992 Jan 30;355(6359):409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  36. Rothman J. E. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell. 1989 Nov 17;59(4):591–601. doi: 10.1016/0092-8674(89)90005-6. [DOI] [PubMed] [Google Scholar]
  37. Sherman MYu, Goldberg A. L. Involvement of the chaperonin dnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J. 1992 Jan;11(1):71–77. doi: 10.1002/j.1460-2075.1992.tb05029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vidal V., Ranty B., Dillenschneider M., Charpenteau M., Ranjeva R. Molecular characterization of a 70 kDa heat-shock protein of bean mitochondria. Plant J. 1993 Jan;3(1):143–150. doi: 10.1046/j.1365-313x.1993.t01-6-00999.x. [DOI] [PubMed] [Google Scholar]
  39. Vogel J. P., Misra L. M., Rose M. D. Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol. 1990 Jun;110(6):1885–1895. doi: 10.1083/jcb.110.6.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Watts F. Z., Walters A. J., Moore A. L. Characterisation of PHSP1, a cDNA encoding a mitochondrial HSP70 from Pisum sativum. Plant Mol Biol. 1992 Jan;18(1):23–32. doi: 10.1007/BF00018453. [DOI] [PubMed] [Google Scholar]
  41. Wooden S. K., Kapur R. P., Lee A. S. The organization of the rat GRP78 gene and A23187-induced expression of fusion gene products targeted intracellularly. Exp Cell Res. 1988 Sep;178(1):84–92. doi: 10.1016/0014-4827(88)90380-1. [DOI] [PubMed] [Google Scholar]
  42. Wooden S. K., Li L. J., Navarro D., Qadri I., Pereira L., Lee A. S. Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol Cell Biol. 1991 Nov;11(11):5612–5623. doi: 10.1128/mcb.11.11.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES