Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Apr;104(4):1401–1409. doi: 10.1104/pp.104.4.1401

Characterization of a low molecular mass autophosphorylating protein in cultured sugarcane cells and its identification as a nucleoside diphosphate kinase.

S Moisyadi 1, S Dharmasiri 1, H M Harrington 1, T J Lukas 1
PMCID: PMC159306  PMID: 8016268

Abstract

A low molecular mass (18 kD) phosphoprotein (pp18) was characterized and purified from cultured sugarcane (Saccharum officinarum L.) cell line H50-7209. Autophosphorylation assays were used to detect pp18 after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Only pp18 was detected by a brief in situ phosphorylation method, whereas additional putative protein kinases were detected by an extended method. pp18 was present in both microsomal membrane and soluble fractions and exhibited anomalous turnover of 32P label during in vitro phosphorylation experiments with highest levels present at shorter incubation times. Two major isoforms of the protein were identified in two-dimensional isoelectric focusing/SDS-PAGE of crude extracts and microsomal fractions. The levels of pp18 were enhanced approximately 4-fold by heat shock at 36 degrees C and the elevated pp18 decayed after heat shock was discontinued. pp18 was purified to apparent homogeneity, could be phosphorylated on serine residues, and also exhibited kinase-like activity toward histone H1. The amino acid sequence obtained from a cyanogen bromide digest was greater than 80% identical to nucleoside diphosphate (NDP) kinases from a variety of organisms. Biochemical analysis of the purified protein confirmed the identity as NDP kinase. Thus, NDP kinase appears to be modulated by heat shock in plants.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggs J., Hersperger E., Steeg P. S., Liotta L. A., Shearn A. A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell. 1990 Nov 30;63(5):933–940. doi: 10.1016/0092-8674(90)90496-2. [DOI] [PubMed] [Google Scholar]
  2. Blowers D. P., Trewavas A. J. Autophosphorylation of plasma membrane bound calcium calmodulin dependent protein kinase from pea seedlings and modification of catalytic activity by autophosphorylation. Biochem Biophys Res Commun. 1987 Mar 13;143(2):691–696. doi: 10.1016/0006-291x(87)91409-4. [DOI] [PubMed] [Google Scholar]
  3. Blowers D. P., Trewavas A. J. Rapid cycling of autophosphorylation of a ca-calmodulin regulated plasma membrane located protein kinase from pea. Plant Physiol. 1989 Aug;90(4):1279–1285. doi: 10.1104/pp.90.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  5. Hemmerich S., Pecht I. Oligomeric structure and autophosphorylation of nucleoside diphosphate kinase from rat mucosal mast cells. Biochemistry. 1992 May 19;31(19):4580–4587. doi: 10.1021/bi00134a007. [DOI] [PubMed] [Google Scholar]
  6. Kimura N., Shimada N., Nomura K., Watanabe K. Isolation and characterization of a cDNA clone encoding rat nucleoside diphosphate kinase. J Biol Chem. 1990 Sep 15;265(26):15744–15749. [PubMed] [Google Scholar]
  7. Klimczak L. J., Hind G. Biochemical Similarities between Soluble and Membrane-Bound Calcium-Dependent Protein Kinases of Barley. Plant Physiol. 1990 Apr;92(4):919–923. doi: 10.1104/pp.92.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lacombe M. L., Wallet V., Troll H., Véron M. Functional cloning of a nucleoside diphosphate kinase from Dictyostelium discoideum. J Biol Chem. 1990 Jun 15;265(17):10012–10018. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Muñoz-Dorado J., Almaula N., Inouye S., Inouye M. Autophosphorylation of nucleoside diphosphate kinase from Myxococcus xanthus. J Bacteriol. 1993 Feb;175(4):1176–1181. doi: 10.1128/jb.175.4.1176-1181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Muñoz-Dorado J., Inouye S., Inouye M. Nucleoside diphosphate kinase from Myxococcus xanthus. II. Biochemical characterization. J Biol Chem. 1990 Feb 15;265(5):2707–2712. [PubMed] [Google Scholar]
  12. Nomura T., Fukui T., Ichikawa A. Purification and characterization of nucleoside diphosphate kinase from spinach leaves. Biochim Biophys Acta. 1991 Mar 8;1077(1):47–55. doi: 10.1016/0167-4838(91)90524-4. [DOI] [PubMed] [Google Scholar]
  13. Nomura T., Yatsunami K., Honda A., Sugimoto Y., Fukui T., Zhang J., Yamamoto J., Ichikawa A. The amino acid sequence of nucleoside diphosphate kinase I from spinach leaves, as deduced from the cDNA sequence. Arch Biochem Biophys. 1992 Aug 15;297(1):42–45. doi: 10.1016/0003-9861(92)90638-d. [DOI] [PubMed] [Google Scholar]
  14. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosengard A. M., Krutzsch H. C., Shearn A., Biggs J. R., Barker E., Margulies I. M., King C. R., Liotta L. A., Steeg P. S. Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development. Nature. 1989 Nov 9;342(6246):177–180. doi: 10.1038/342177a0. [DOI] [PubMed] [Google Scholar]
  16. Timerman A. P., Mayrleitner M. M., Lukas T. J., Chadwick C. C., Saito A., Watterson D. M., Schindler H., Fleischer S. Inositol polyphosphate receptor and clathrin assembly protein AP-2 are related proteins that form potassium-selective ion channels in planar lipid bilayers. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8976–8980. doi: 10.1073/pnas.89.19.8976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES